Структуры цифровых КП третьего класса появились в конце 70-х годов благодаря возможности создания соответствующих интегральных схем. Поля этого класса являются в известной мере универсальными поскольку позволяют однотипно строить системы коммутации практически для всего диапазона емкостей: малой, средней и большой. При этом наращивание емкости происходит, в основном, за счет увеличения количества звеньев пространственной коммутации, переходя от более простых структур S/T-S-S/T (рис. 3.10, а) к более сложным S/T-S-S-S/T (рис. 3.10, б) и S/T-S-S-S-S/T, поскольку увеличение емкости самой S-ступени является более дорогим решением. Часто при проектировании коммутационного поля ступени временной и пространственной коммутации объединяются в соответствующие блоки: блок временной коммутации (БВК) и блок пространственной коммутации (БПК). Тогда наращивание емкости КП происходит путем простого добавления определенного количества БВК и БПК (рис. 3.10, в).
К цифровым АТС, использующим КП данного класса, относятся системы МТ20/25 (Франция), System X (DSS) (Великобритания), EWSD (Германия), GDT5 ЕАХ (США), DTS-11 (Япония) и ряд других, на основе которых можно строить местные, междугородные и транзитные станции.
Установление соединения через коммутационное поле происходит по схожему алгоритму с КП второго класса. Если обобщить сказанное в предыдущих главах, то процесс коммутации состоит из последовательности следующих операций:
- изменение кода передачи, состоящее в переходе от принципа кодирования, согласованного с линейным трактом (например, HDB3), к кодированию, согласованному с внутренними электронными цепями АТС (двоичному);
- синхронизация сигналов в соответствии с сигналами, полученными от тактового генератора станции;
- задержка информации, полученной по входящим каналам, на время, определяемое временным моментом внутристанционной обработки;
- соединение выхода входящей ступени пространственно-временной коммутации через пространственный коммутатор с входом исходящей ступени пространственно-временной коммутации;
- переход от временного момента внутристанционной обработки к моменту, соответствующему определенному КИ исходящего тракта ИКМ;
- преобразование отсчетов речи из параллельного кода в последовательную форму;
- переход от принципа кодирования, согласованного с внутренними цепями АТС к кодированию, согласованному с линейным трактом.
Рис. 3.10. Структуры полей третьего класса
В некоторых случаях в системах третьего класса для увеличения быстродействия логических элементов ^-ступени и устранения межсимвольной интерференции ступень пространственной коммутации разделялась на две части (матрицы), одна из которых была предназначена для работы с циклами четных временных канальных интервалов, другая - с циклами нечетных.
Кроме этого, довольно часто при создании КП третьего класса организуется непосредственное соединение части групп входящих временных коммутаторов с группой исходящих, минуя ступень пространственной коммутации, для чего организуются специальные внутренние соединительные линии. Это позволяет использовать S-ступень меньшей емкости и, соответственно, стоимости. Более того, при построении КП малой и средней емкости (до 16 384 КИ) удавалось строить структуры, в которых вообще отсутствовала ступень пространственной коммутации. В этом случае БВК соединялись между собой непосредственно. Такие решения имеют практически все крупные производители цифровых АТС. Подобные цифровые КП, в общем случае, следует относить уже к четвертому классу, хотя создавались они обычно на универсальных схемах средней степени интеграции (СИС), которые использовались для коммутационных полей 3-го класса.
Однако, при использовании таких интегральных схем не удавалось получить цифровые КП большой емкости, состоящие только из S/T-ступеней. Положение изменилось с созданием специализированных БИС, функционально реализующих S/T-ступень достаточно большой емкости.