FIR1– фильтр FIR проектируется с использованием метода окна:
B = FIR1(N,Wn) проектирует НЧ цифровой фильтр FIR -го порядка и возвращает коэффициенты в векторе B длиной . Частота среза должна быть между 0 < < 1.0, с 1.0 соответствует половине частоты дискретизации.
Если – двухэлементный вектор, = [ ], FIR1 возвращает полосовой фильтр порядка с полосой < < . B = FIR1(N,Wn,'high') проектирует ВЧ-фильтр. B=FIR1(N,Wn,'stop') проектирует фильтр с полосой задержки, если = [ ]. Для высокочастотных и фильтров с полосой задержки N должно быть четным.
По умолчанию FIR1 использует окно Хэмминга. Другие представленные окна, включая прямоугольное (Boxcar), Хэмминга, Бартлетта, Блэкмана, Кайзера и Чебышева (Chebwin), могут быть определены с помощью необязательных аргументов. Например, B=FIR1(N,Wn,bartlett(N+1)) использует окно Бартлетта. B=FIR1(N,Wn,'high',chebwin(N+1,R)) использует окно Чебышева.
Смотри также FIR2, FIRLS, REMEZ, BUTTER, CHEBY1, CHEBY2, YULEWALK, FREQZ и FILTER.
FIR2 – проектирование фильтра FIR с использованием оконного метода для произвольной формы фильтра:
B = FIR2(N,F,M) проектирует цифровой фильтр FIR -го порядка с произвольной частотной характеристикой, определяемой векторами и , и возвращает коэффициенты фильтра вектора длиной + 1. Вектора и определяют частоту и амплитуду контрольных точек для фильтра, такие, что PLOT( , ) может отобразить желаемую частоту отклика. Частоты в должны быть между 0.0 < < 1.0, с 1.0 соответствуют половине заданной частоты дискретизации. Они должны располагаться по возрастанию с началом в 0.0 и окончанием в 1.0.
По умолчанию FIR2 использует окно Хэмминга. Другие представленные окна, включая прямоугольное (Boxcar), Хэннинга, Бартлетта, Блэкмана, Кайзера и Чебышева (Chebwin), могут быть определены с использованием необязательных аргументов. Например, B=FIR2(N,F,M,bart-lett(N+1)) использует окно Бартлетта. B=FIR2(N,F,M,chebwin(N+1,R)) использует окно Чебышева.
Смотри также FIR1, FIRLS, REMEZ, BUTTER, CHEBY1, CHEBY2, YULEWALK, FREQZ и FILTER.
FIRLS– проектирование КИХ-фильтра с использованием минимизации ошибок методом наименьших квадратов (МНК):
B=FIRLS(N,F,M) возвращает длину вектора , содержащего N + 1 коэффициентов КИХ-фильтра, который дает наилучшую аппроксимацию желаемой частотной характеристики, описанной векторами и , в смысле МНК. – вектор краев полосы частот, расположен в порядке возрастания от 0 до 1. 1, соответствует частоте Найквиста или половине заданной частоты дискретизации. – вещественный вектор того же размера, что и , который определяет желаемую амплитудную характеристику фильтра B. Желаемый отклик – это линейное соединение точек ( , ) и ( ,) для нечетных . Таким образом, желаемая амплитуда получается способом кусочной линеаризации.
B=FIRLS(N,F,M,W) использует веса для взвешивания ошибки. имеет одно вхождение для каждой частоты (таким образом, это половина длин и ), которые сообщают FIRLS, на что делать акцент, чтобы минимизировать СКО для всех полос частот относительно других полос.
B=FIRLS(N,F,M,'Hilbert') и B=FIRLS(N,F,M,W,'Hilbert') проектирует фильтр, который имеет нечетную симметрию, т. е. для . Специальный случай – преобразователь Гильберта, который аппроксимирует амплитуду от 1 через всю входную полосу частот, т. е. B=FIRLS(30,[.1 .9],[1 1],'Hilbert').
Для проектирования дифференциатора используется B=FIRLS(N,F,M, 'differentiator').
B=FIRLS(N,F,M,W,'differentiator') также проектирует фильтры с нечетной симметрией, но со специальной функцией взвешивания для полос с ненулевой амплитудой. Этот фильтр гораздо лучше подходит для низких частот, чем для верхних.
Смотри также REMEZ, FIR1, FIR2, FREQZ и FILTER.
INTFILT– расчет интерполирующего КИХ-фильтра:
B = INTFILT(R,L,ALPHA) проектирует линейно-фазовый КИХ-фильтр, выполняющий интерполяцию по ненулевым отсчетам последовательности, в которой между каждыми R отсчетами исходной последовательности помещается нулевых отсчетов. Длина результирующего фильтра .
B = INTFILT(R,N,'Lagrange') проектирует КИХ-фильтр, который выполняет полиномиальную интерполяцию Лагранжа -го порядка на последовательности, которая между каждыми отсчетами исходной последовательности помещает нулевых отсчетов Вектор имеет длину для нечетных и – для четных. Если оба, и , четные, то проектируемый фильтр не линейно-фазовый.
C помощью этих функций рассчитываются НЧ-фильтры, которые могут быть использованы при интерполяции и децимации (уменьшение частоты дискретизации в заданное целое число раз).
Смотри также INTERP.
REMEZ– синтез оптимального FIR-фильтра с равномерной (чебышевской) аппроксимацией на основе алгоритма Паркса – Мак-Клелана:
B=REMEZ(N,F,M) возвращает коэффициентов КИХ-фильтра с линейной фазой, который наилучшим образом аппроксимирует желаемую амплитудно-частотную характеристику, задаваемую векторами и . При этом минимизируется максимальное отклонение АЧХ спроектированного фильтра от желаемой АЧХ.
B=REMEZ(N,F,M,W) использует веса W как веса ошибок. B=REMEZ(N, F,M,'Hilbert') и B=REMEZ(N,F,M,W,'Hilbert') проектирует фильтры с нечетной симметрией, т. е. для . B=REMEZ(N,F,M,'differentiator') и B=REMEZ(N,F,M,W,'differentiator') также проектируют фильтры с нечетной симметрией, но со специальной весовой схемой для полос с ненулевой амплитудой, используются для проектирования дифферециаторов.
Смотри также FIRLS, FIR1, FIR2, BUTTER, CHEBY1, CHEBY2, ELLIP, FREQZ и FILTER.