За последние годы около тридцати вузов РФ открыли подготовку инженерных кадров по направлению 654400 «Телекоммуникации» и испытывают острую нехватку в обеспечении учебного процесса учебниками и учебными пособиями. Приведенный в учебнике «Цифровые и аналоговые системы передачи» материал в основном является базовым, а поэтому не теряет своей актуальности по мере развития средств телекоммуникаций. В книге уделено большое внимание цифровым системам передачи, работающим по проводным, спутниковым, радиорелейным и оптическим линиям связи. Материал учебного пособия соответствует основным требованиям нового Государственного образовательного стандарта высшего профессионального образования второго поколения, принятого в 2000 году.
Следует обратить внимание на то, что за прошедшие годы (первое издание вышло в свет в 1996 г.) произошли изменения в названиях некоторых вузов, сотрудники которых принимали участие в написании учебника, а именно: Новосибирский электротехнический институт связи (НЭИС) ныне называется Сибирским государственным университетом телекоммуникаций и информатики (СибГУТИ), Поволжский институт информатики, радиотехники и связи (ПИИРС) -Поволжской государственной академией телекоммуникаций и информатики (ПГАТИ).
ВВЕДЕНИЕ
Средства общения между людьми (средства связи) непрерывно совершенствуются в соответствии с изменениями условий жизни, развитием культуры и техники. Сегодня средства связи стали неотъемлемой частью производственного процесса и нашего быта. Современные системы связи должны не только гарантировать быструю обработку и надежность передачи информации, но и обеспечивать выполнение этих условий наиболее экономичным
способом.
Информация передается по каналам связи (рис. 8.1).
Линией связи называется среда распространения электромагнитных волн, используемая для передачи сигналов от передатчика (Пер) к приемнику (Пр). Такой средой могут быть воздушная, кабельная, радиорелейная линии связи, волноводы и т. д. Передатчик, линия связи и приемник образуют канал связи. Источник сообщений, передатчик, линия связи, приемник и получатель сообщений образуют систему связи.
Высокая стоимость линий связи обусловливает разработку систем и методов, позволяющих одновременно передавать по одной линии связи большое число независимых сообщений, т. е. использовать линию многократно. Такие системы передачи называются многоканальными. Связь, осуществляемую с помощью этих систем, принято называть многоканальной.
Рис. 8.1. Обобщенная схема канала связи
Основной задачей, которая решается при создании многоканальной связи, является увеличение дальности связи и числа каналов.
В истории развития телефонной связи можно выделить три этапа.
Первый этап характеризуется появлением электрической связи - созданием первого электромагнитного телеграфа, изобретенного в начале 1830-х гг. русским ученым П. Л. Шиллингом.
Задача увеличения дальности связи эффективно решена русским академиком Б. С. Якоби, предложившим в 1858 г. телеграфную трансляцию. В том же году было положено начало повышению эффективности использования линейных сооружений: русский инженер 3. Я. Слонимский изобрел дуплексное телеграфирование.
Первый вклад в технику многоканальной связи был сделан Г. И. Морозовым в 1869 г., предложившим способ одновременного телеграфирования по общей цепи с помощью токов различных частот.
Началом развития телефонной связи считается 1876 г., когда американец А. Белл предложил использовать для передачи речи па расстояние электромагнитный прибор, названный телефоном. В 1878 г. была разработана схема телефонного аппарата с угольным микрофоном. В этом же году Т. Эдисон предложил использовать в схеме передачи речи трансформатор, что обеспечивало двустороннюю передачу и большую дальность.
В 1880 г. Г. Г. Игнатьев создал схему для одновременного телеграфирования и телефонирования, основанную на разделении телеграфных и телефонных сигналов с помощью простейших электрических фильтров, т. е. был открыт принцип частотного разделения каналов. В это же время Пикар и Кайло предложили схемы для одновременного телеграфирования и телефонирования на основе применения принципа уравновешенного моста.
Хотя таким образом были созданы предпосылки для построения многоканальных систем связи, однако практически на первом этапе развития междугородной связи использовались отдельные телеграфные и телефонные цепи. Изучение свойств и опыт проектирования и строительства таких цепей позволили со временем перейти к практическому созданию многоканальных систем связи. Это стало возможным после развития методов радиотехники, изобретения электронных ламп и применения их для усиления, генерации переменных токов, модуляции и демодуляции, разработки теории и методов проектирования электрических фильтров, выравнивателей и других элементов.
Второй этап развития многоканальной связи начинается с создания дуплексных усилителей. В 1915 г. инженер, капитан русской армии В. И. Коваленков продемонстрировал макет ламповых телефонных трансляторов на Всероссийском съезде инженеров-электриков. Предложенная им идея двустороннего действия с дифференциальной системой соединения до сих пор остается основой построения дуплексных усилителей каналов тональной частоты (ТЧ). В 1922 г. в Бологом был установлен первый телефонный транслятор системы Коваленкова, обеспечивающий уверенную связь Петрограда с Москвой. Были организованы телефонные магистрали большой протяженности (Москва — Тбилиси, Москва — Магнитогорск и др.). т. е. на втором этапе теоретически была решена проблема увеличения дальности связи.
Третий этап характеризуется решением проблемы многоканальности. В конце 20-х гг. был реализован полосовой фильтр, позволяющий выделять одну боковую полосу частот. К 1930 г. появилась отечественная трехканальная аппаратура. В 1940 г. была сдана в опытную эксплуатацию, первая в СССР 12-канальная система передачи по воздушным линиям из цветных металлов. Началась прокладка кабельных линий. Был создан кабель нового типа — коаксиальный, пригодный для использования в широком спектре частот.
После войны техника многоканальной связи стала развиваться особенно интенсивно. Было налажено производство симметричного кабеля, разработана аппаратура К-12, затем 24- и 60-канальные системы К-24-2 и К-60. Для передачи по коаксиальным кабелям разработаны системы К-120, К-300, К-1920, К-3600, К-2700, К-5400, К-Ю800. Все более широкое применение получают РРЛ большой емкости. Одновременно развиваются цифровые системы передачи (ИКМ-12, ИКМ-24, ИКМ-30, ИКМ-120, ИКМ-480, ИКМ-1920 и др.), которые постепенно вытесняют аналоговые.
Последние два десятилетия знаменуются развитием волоконно-оптических систем передачи (ВОСП). По сравнению с существующими системами, работающими по медному кабелю, ВОСП обладают рядом преимуществ, основными из которых являются: широкая полоса пропускания, позволяющая организовывать необходимое число каналов по одному волоконно-оптическому тракту; возможность предоставления абоненту наряду с телефонной связью любых из существующих ныне и создаваемых в процессе развития видов услуг связи (телевидение, телефакс, широкополосное радиовещание, различные телематические и справочные службы, рекламу, местную связь и др.); высокая защищенность от электромагнитных помех; малое километрическое затухание и возможность организации регенерационных участков большой протяженности; значительная экономия меди и потенциально низкая стоимость оптического кабеля. В настоящее время на городских телефонных сетях (ГТС) активно внедряются ВОСП ИКМ-120-4/5, ИКМ-480-5 («Сопка-1»), на магистральных и зоновых — «Сопка-2», «Сопка-3», «Сопка-4», «Сопка-5» и др.
Основными направлениями в развитии систем передачи являются: повышение эффективности использования линий связи, увеличение дальности связи, повышение ее качества и надежности, постоянное техническое совершенствование элементов и узлов аппаратуры.
Глава 1. ПРИНЦИПЫ МНОГОКАНАЛЬНОЙ
ПЕРЕДАЧИ СИГНАЛОВ
1.1. СИГНАЛЫ ЭЛЕКТРОСВЯЗИ
И ИХ ОСНОВНЫЕ ХАРАКТЕРИСТИКИ
Задачей техники многоканальной связи является одно- или двусторонняя' передача на большие расстояния различного рода информации. Все виды информации, передаваемые с помощью средств электрической связи, можно разделить на две группы: сообщения и данные.
К сообщениям относится информация, воспринимаемая органами чувств одного или нескольких человек. Сообщениям свойственна так называемая избыточность, т. е. наличие в данной информации элементов, несущественных для правильного понимания ее содержания. Такие элементы могут быть отброшены без потери смысла передаваемой информации.
К данным относится информация, передаваемая в виде целесообразно выбранных символов, пригодных для машинной обработки, и бедная или не обладающая избыточностью.
Сообщения, передаваемые по каналам связи, преобразуются передатчиком (см. рис. В.1) в непрерывные (аналоговые) или дискретные (прерывистые) электрические сигналы или сигналы электросвязи (первичные сигналы). К последним относятся: телефонный, звукового вещания, факсимильный, телевизионный, телеграфный, передачи данных.
Телефонный (речевой) сигнал. Звуки речи образуются в результате прохождения воздушного потока из легких через голосовые связки и полости рта и носа. Частота импульсов основного тона лежит в пределах от 50 ... 80 Гц (бас) до 200 ... 250 Гц (женский и детский голоса). Импульсы основного тона содержат большое число гармоник (до 40), причем их амплитуды убывают с увеличением частоты со скоростью приблизительно 12 дБ на октаву. При разговоре частота основного тона меняется в значительных пределах. Высокое качество передачи телефонного сигнала характеризуется уровнем громкости, разборчивостью, естественным звучанием голоса, низким уровнем помех. Эти факторы определяют требования к телефонным каналам.
Основными характеристиками телефонного сигнала являются:
мощность телефонного сигнала РТЛф. Согласно данным МККТТ (Международный консультативный комитет по телеграфии и телефонии) средняя мощность телефонного сигнала в точке с нулевым
Рис. 1.1. Энергетический спектр
речевого сигнала
измерительным уровнем на интервале активности составляет 88 мкВт. С учетом коэффициента активности (0,25) средняя мощность телефонного сигнала равна 22 мкВт. Кроме речевых сигналов в канал поступают сигналы управления, набора номера, вызова и т. д. С учетом этих сигналов среднюю мощность телефонного сигнала принимают равной 32 мкВт, что соответствует уровню рСр = —15 дБм0;
коэффициент активности телефонного сообщения, т. е. отношение времени, в течение которого мощность сигнала на выходе канала превышает заданное пороговое значение, к общему времени занятия канала для разговора. При разговоре каждый из собеседников говорит приблизительно 50% времени. Кроме того, отдельные слова, фразы отделяются паузами. Поэтому коэффициент активности составляет 0,25 ... 0,35;
динамический диапазон телефонного сигнала — десять десятичных логарифмов отношения максимальной мощности к минимальной (или разность между максимальным и минимальным уровнями сигнала): D = 10 lg (pmax /pmin) =ртах—ртin. Для телефонного сигнала D = 35... 40 дБ;
пик-фактор сигнала Q = 10 lg (pmax /pcp) или Q = pmax - pcp), который составляет Q = 14 дБ. При этом максимальная мощность, вероятность превышения которой исчезающе мала, равна 2220 мкВт ( + 3,5дБм0);
энергетический спектр речевого сигнала — область частот, в которой сосредоточена основная энергия сигнала (рис. 1.1) β = 10 lg [П2(f) / П02]. Δ f , где П2 (f) —спектральная плотность среднего квадрата звукового давления; По — порог слышимости (минимальное звуковое давление, которое начинает ощущаться человеком снормальным слухом на частотах 600... 800 Гц); Δ f =1 Гц. Из рис. 1.1 следует, что речь представляет собой широкополосный процесс, частотный спектр которого простирается от 50... 100 до 8000 ... 10 000 Гц. Установлено, однако, что качество речи получается вполне удовлетворительным при ограничении спектра частотами 300 ... 3400 Гц. Эти частоты приняты МККТТ в качестве границ эффективного спектра речи. При указанной полосе частот слоговая разборчивость составляет около 90%, разборчивость фраз — более 99% и сохраняется удовлетворительная натуральность звучания;
количество информации речевого сигнала
Ip = η Δ F log2 (1 + Pp.cp / Pш), (1.1)
где Δ F = 3100 Гц — эффективная ширина спектра речи; Рp.cp = 88 мкВт — средняя мощность речевого сигнала на активных интервалах; т] = 0,25 — коэффициент активности; Рш — допустимая невзвешенная мощность шума (178 000 пВт). Подставляя эти значения в (1.1), получаем Ip=8000 бит/с.
Сигналы звукового вещания.Источником звука при передаче программ вещания обычно являются музыкальные инструменты пли голос человека.
Динамический диапазон сигналов вещательной передачи следующий: речь диктора 25 ... 35 дБ, художественное чтение 40 ... ... 50 дБ, вокальные и инструментальные ансамбли 45 ... 55 дБ, симфонический оркестр до 65 дБ. При определении динамического диапазона максимальным считается уровень, вероятность превышения которого равна 2%, а минимальным—98%.
Средняя мощность сигнала вещания существенно зависит от интервала усреднения. В точке с нулевым измерительным уровнем средняя мощность составляет 923 мкВт при усреднении за час, 2230 мкВт — за минуту и 4500 мкВт — за секунду. Максимальная мощность сигнала вещания в точке с нулевым измерительным уровнем составляет 8000 мкВт.
Частотный спектр сигнала вещания расположен в полосе частот 15... 20000 Гц. При передаче как телефонного сигнала, так и сигналов вещания полоса частот ограничивается. Для достаточно высокого качества (каналы вещания первого класса) эффективная полоса частот должна составлять 0,05... 10 кГц, для безукоризненного воспроизведения программ (каналы высшего класса) 0,03... ... 15 кГц.
Количество информации сигналов вещания, определяемое по (1.1), при Δ F = 10000 Гц, РСР = 923 мкВт и Рп = 4000 пВт составляет Iвещ = 180 000 бит/с.
Факсимильный сигнал.Факсимильной связью называется передача неподвижных изображений (рисунков, чертежей, фотографий, газетных полос и т. д.) по каналам электрической связи. Первичные факсимильные сигналы получают в результате электрооптического анализа, заключающегося в преобразовании светового потока, отражаемого элементарными площадками изображения, в электрические сигналы. В приемнике полученный электрический сигнал возбуждает какое-либо физическое воздействие, окрашивающее элементарные площади носителя записи, в результате чего получается копия передаваемого изображения.
Бланк с передаваемым изображением накладывается на барабан (Б) передающего факсимильного аппарата (рис. 1.2).,На поверхность изображения проектируется яркое световое пятно, перемещающееся вдоль оси барабана. При вращении последнего под действием мотора (М) световое пятно по винтовой линии обегает его поверхность, осуществляя развертку изображения.
Отраженный световой поток воздействует на фотоэлемент (ФЭ), в результате чего в его цепи появляется изменяющийся во времени ток, мгновенное значение которого определяется оптической плотностью (отражающей способностью) элементов изображения.
В приемной части факсимильного аппарата принятый сигнал подается на безынерционную газосветную лампу (ГЛ). Пучок света от лампы фокусируется на поверхности светочувствительной бумаги, закрепленной на барабане приемного аппарата. Барабан вращается синхронно и синфазно с барабаном передатчика, световое пятно от ,ГЛ перемещается вдоль его оси. В результате после проявления получается копия передаваемого изображения.
Частотный спектр первичного факсимильного сигнала определяется характером передаваемого изображения, скоростью развертки и размерами анализирующего пятна. Максимальную частоту рисунка fрисможно рассчитать, полагая, что оригинал представляет собой чередующиеся черные и белые полосы, перпендикулярные направлению развертки, причем ширина этих полос равна ширине анализирующего пятна. В этом случае fрис = πDN/120 d , где D — диаметр барабана, мм; N— частота вращения барабана, об/мин; й — ширина анализирующего пятна, мм.
Параметры факсимильных аппаратов, рекомендуемые МККТТ: N=120, 90 и 60 об/мин; D = 70 мм и d =0,15 мм. Соответственно fрис=1465 Гц при N=120 об/мин; fрис=1100 Гц при N=90 об/мин; fрис= 732 Гц при N = 60 об/мин. При передаче реальных изображений получается первичный сигнал сложной формы, энергетический спектр которого содержит частоты 0...fрис. Динамический диапазон сигнала составляет приблизительно 25 дБ, пик-фактор равен 4,5 дБ при l=16 градациям яркости.
Информационную содержательность факсимильного сигнала определяют по формуле Ip = Fт log2 l, полагая число уровней сигнала l=2 для штрихового изображения, l=16 для полутонового и Fт =2 fрис. В результате расчетов fфакс = 2,93 . 103 бит/с (l=2, N=120 об/мин) и fmax=11,7 . 103 бит/с (l=16, N=120 об/мин).
Телевизионный сигнал. При телевидении, как и при факсимильной связи, первичный сигнал формируется методом развертки.
Спектр телевизионного сигнала (видеосигнала) зависит от характеристик передаваемого изображения, но структура определяется в основном разверткой. Анализ показывает, что энергетический спектр телевизионного сигнала сосредоточен в полосе частот 0 ... 6 МГц. Цветное телевидение должно быть совместимо с черно-Ослым, т. е. цветные передачи должны приниматься в виде чорно-белых на монохромные телевизоры и черно-белые передачи — на приемники цветного изображения. Эти условия выполняются с помощью специальной обработки первичных сигналов.
Динамический диапазон телевизионных сигналов составляет приблизительно 40 дБ, пик-фактор 4,8 дБ, а информативность 80-106 бит/с.
Телеграфные сигналы и сигналы передачи данных. Первичные телеграфные сигналы и сигналы передачи данных имеют вид последовательностей двухполярных (рис. 1.3, а) или однополярных (рис. 1,3,6) прямоугольных импульсов. Длительность импульсов определяется скоростью передачи В, измеряемой в бодах. Тогда величина Рт=1/ти называется тактовой частотой, которая численно равна скорости передачи В. График нормированного энергетического спектра Оптелеграфного сигнала показан на рис. 1.4, из которого видно, что основная энергия сигнала сосредоточена в полосе частот 0 ... Рт. Понятия динамического диапазона, пик-фактора для таких сигналов не имеют смысла, а количество информации 1тлг=<Рт.
1.2. ПРИНЦИПЫ ПОСТРОЕНИЯ СИСТЕМ ПЕРЕДАЧИ
Передача первичных сигналов от одного абонента к другому осуществляется с помощью электромагнитных сигналов, которые передаются по каналам связи. Линии связи обычно являются наиболее дорогостоящей частью систем передачи (СП) и отличаются большим разнообразием — это воздушные, кабельные, радиорелейные, спутниковые, волоконно-оптические и другие линии. С помощью СП осуществляется одновременная и взаимно
Рис. 1.5. Структурная схема системы передачи
независимая передача сообщений от N абонентов, расположенных в пункте А, к N абонентам, расположенным в пункте Б.
Первичные сигналы (рис. 1.5) с1(i), c2(t),..., cN (t) от N абонентов поступают на входы N каналов оборудования оконечного пункта (ОП А). В каждом, например i-м, канале с помощью соответствующего модулятора Mi первичный сигнал ci(t) преобразуется в канальный ui(t) и на выходе сумматора действует групповой сигнал
Необходимость преобразования ci(t) в ui(t) обусловлена тем, что совокупность сигналов {ci(t)} не обладает свойством разделимости. Действительно, если объединить несколько источников первичных сигналов, например подключить несколько телефонных аппаратов к одной линии и говорить по ним одновременно, то на приеме невозможно определить, к какому каналу относится каждый первичный-сигнал. Очевидно, что канальные сигналы ui(t),... uN (t) должны обладать существенными отличительными признаками, чтобы на приемном конце с помощью простых технических средств можно было отделить один канальный сигнал от другого. Передающая часть (Пер) оборудования оконечного пункта преобразует групповой сигнал в линейный, который поступает в линию связи. Последнее преобразование обусловлено большим разнообразием линий. Поэтому при формировании линейного сигнала из группового необходимо учитывать свойства соответствующей линии связи, и в частности рабочий диапазон частот, уровни передаваемых и принимаемых сигналов, а также помех.
Прохождение сигналов по линиям связи сопровождается искажением их формы и ослаблением мощности. Кроме того, происходит маскирование сигналов помехами. Поэтому в подавляющем большинстве случаев линию связи разбивают на отдельные участки, в конце которых устанавливают обслуживаемые или необслуживаемые промежуточные усилительные пункты (ОУП, НУП). Расстояние между ними выбирается сравнительно малым, в результате чего удается на каждом усилительном пункте достаточно качественно восстановить форму передаваемых сигналов и
Рис. 1.6. Структурная схема системы передачи с ЧРК
обеспечить их защищенность от помех. В случае цифровых систем передачи с помощью оборудования НУП (ОУП) удается практически полностью восстановить форму передаваемых сигналов, т. е. осуществить их регенерацию.
Приемная часть (Пр) ОП станции Б, во-первых, выполняет функции оборудования ОУП, во-вторых, преобразует линейный сигнал в групповой, Совокупность передающей части станции А, приемной — станции Б ОУП, НУП и линии связи объединяется в линейный тракт. В Пункте Б с выхода линейного тракта сигнал ur(t) поступает на вход совокупности разделителей Р1,..., РNканальных сигналов. Так, в г-м канале Piвыделяет ui (t) из ur(t). Затем с помощью демодуляторов ДМ1... ,ДМN канальные сигналы преобразуются в первичные и поступают на выходы каналов.
В настоящее время широкое распространение имеют СП с частотным разделением каналов (СП-ЧРК). Отличительным признаком канальных сигналов в случае ЧРК является частотный диапазон, занимаемый спектром сигналов ui (t). С помощью системы несущих колебаний fн1 ..., fНN (рис. 1.6) модуляторы М1,..., МNформируют канальные сигналы, спектры которых занимают взаимно непересекающиеся диапазоны частот (рис. 1.7). Спектры первичных сигналов идентичны и занимают диапазон 0,3... 3,4 кГц. Здесь используется стандартное обозначение спектра первичного сигнала в виде
Рис.1.7 Схема преобразования спектров сигналов в
СП с ЧРК
прямоугольного треугольника. В результате модуляции формируются канальные сигналы со спектрами S1 (ω), … , SN (ω) . На приемном конце разделение канальных сигналов осуществляется системой, канальных фильтров КФ1 ..., КФN. Из АЧХ канального фильтра i-го канала (рис. 1.8) видно, что частотные компоненты, принадлежащие канальному сигналу i-го канала, проходят через КФi без ослабления, а частотные компоненты других канальных сигналов подавляются не менее чем на 60 дБ, что соответствует их ослаблению по напряжению в 1000 раз. В результате можно считать, что на выход КФiпроходит только канальный сигнал ui (t).
Кроме СП-ЧРК в настоящее время все более широкое использование находят СП с временным разделением каналов (СП-ВРК)-Функционирование этих систем передачи связано с разбиением времени передачи на циклы длительностью Тоили с частотой следования fд =1/T0, которая называется частотой дискретизации (рис. 1.9). В свою очередь, каждый цикл N - канальной СП разбивается на N канальных интервалов (КИ) длительностью Δtки=T0/N, и в течение каждого канального интервала передается информация соответствующего канала (рис. 1.10).
Рассмотрим передачу сигналов в произвольном, например, i-м канале (рис. 1.11) в течение k циклов (k=l,2, 3,...). В первичном сигнале ci {t) с частотой fд выбирается множество отсчетов с1 i, c2 i, c3 i,..., соответствующих
Рис. 1.10. Структурная схема системы передачи с ВРК
мгновенным значениям ci (t) в моменты t1,, t2., t3,,... (рис. 1.11). Модулятор i-го канала Mi вырабатывает последовательность сигналов u1i(t), u2 i(t), u3 i(t), .. , которые содержат информацию о вышеупомянутых отсчетах, так что канальный сигнал ui(t) = u1i(t) + u2 i(t) + u3 i(t) + ... Временное расположение этих сигналов определяется воздействием импульсов, вырабатываемых распределителем канальных импульсов (РИК) (см. рис. 1.10), действующих на i-м выходе РИК (рис. 1.12). Распределитель на приеме работает синхронно с РИК на передаче. Под воздействием импульсов РИК на приеме замыкается ключ 1-го канала (Кл,), в результате чего на выходе Клi действует только сигнал ui(t). Демодулятор выделяет из ui(t), последовательность отсчетов с1 i, c2 i, c3 i,..., и преобразует ее в первичный сигнал. Теоретическое обоснование возможности передачи информации в СП с ВРК связано с теоремой Котельникова, которая доказывает возможность передачи информации с помощью системы отсчетов, если fд ≥ 2Fmcx , где Fmcx - максимальная частота в спектре первичного сигнала.
В качестве канальных сигналов в СП-ВРК широко используются модулированные импульсные последовательности, и в частности АИМ сигналы. В этом случае высота импульсов пропорциональна отсчетам первичного сигнала. На рис. 1.13 показаны временные диаграммы канальных и группового АИМ сигналов СП-ВРК. Однако групповой АИМ сигнал затруднительно передавать по линии из-за искажения формы импульсов, связанного с резким увеличением длительности фронтов и спадов. В результате возникает взаимное наложение импульсов, находящихся в разных канальных интервалах, что вызывает взаимное влияние между каналами. Это обстоятельство является одной из причин внедрения цифровых СП-ВРК (ЦСП).