русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Случайные величины


Дата добавления: 2014-10-07; просмотров: 622; Нарушение авторских прав


 

Случайная величина – это величина (число), которая в результате опыта может принимать то или иное значение.

Более строго, случайная величина – это числовая функция случайного события.

Случайная величина называется дискретной, если множество ее значений конечно или счетно. Здесь - алгебра событий. Например, число очков на грани брошенной кости, число бросков монеты до появления герба – дискретные случайные величины.

Случайная величина называется непрерывной, если ее значения заполняют некоторый интервал, возможно, бесконечный. Здесь - сигма - алгебра событий. Например, расстояние от центра мишени при стрельбе, время до отказа прибора, ошибка измерения – непрерывные случайные величины.

 

Рассмотрим дискретную случайную величину, принимающую значения . Имеем полную группу (иначе, не все значения учтены) несовместных событий . Вероятности этих событий равны соответственно . Будем говорить, что дискретная случайная величина принимает значения с вероятностями .

Законом распределения дискретнойслучайнойвеличины называется любое соотношение, устанавливающее зависимость между ее значениями и вероятностями , с которыми эти значения достигаются.

Основные формы закона распределения дискретной случайной величины: ряд распределения – таблица

…..
…..

многоугольник распределения

p3

p2

p1, pn

x1 x2 x3 …xn

Можно задать закон распределения в виде аналитической зависимости, связывающей значения и вероятности .

Рассмотрим непрерывную случайную величину. Для непрерывной случайной величины , поэтому рассматривают события и вероятности этих событий.

Функцией распределения непрерывной случайной величины называется вероятность события . = .

Свойства функции распределения.

1) по аксиомам вероятности,



2) , если , т.е. функция распределения – неубывающая функция.В самом деле, , следовательно, .

3) В самом деле, событие - невозможное, и его вероятность нулевая. Событие - достоверное, и его вероятность равна 1.

4) . Так как события несовместны и событие есть сумма этих событий, то .

 

График функции распределения имеет, примерно, следующий вид

 

F(x)

1

 

 

x

Функцию распределения можно определить и для дискретной случайной величины. Ее график будет графиком ступенчатой функции со скачками в pi в точках xi , непрерывной слева в этих точках.

 

F(x)

 

1

 

 

p3

p2

p1

x

x1 x2 x3 xn

 

Для непрерывной случайной величины вводится плотность распределения вероятностей.

Плотностью распределения(вероятностей) называется производная функции распределения .

Ясно, что .

Часто функцию распределения называют интегральным законом распределения, а плотность распределения – дифференциальным законом распределения. Так как , то p(x)dx называется элементом вероятности.

Свойства плотности распределения.

1) , так как функция распределения – неубывающая функция,

2) (условие нормировки) , так как .

 

Числовые характеристики случайных величин.

Начальный момент s-го порядка

Для дискретных случайных величин .

Для непрерывных случайных величин .

Математическим ожиданиемслучайной величины называется ее первый начальный момент mx = M(x) = .

Для дискретных случайных величин . Если на числовой оси расположить точки с массами , то - абсцисса центра тяжести системы точек. Аналогично, для непрерывных случайных величин имеет смысл центра тяжести кривой распределения.

 



<== предыдущая лекция | следующая лекция ==>
Формула Байеса (теорема гипотез) | Свойства математического ожидания.


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.006 сек.