русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Формула Байеса (теорема гипотез)


Дата добавления: 2014-10-07; просмотров: 1100; Нарушение авторских прав


В соответствии с теоремой умножения вероятностей

Р(АНi) = Р(Hi)·Р(А/Hi) = Р(A)·Р(Hi/А).

В это равенство подставим значение Р(А), вычисленное по формуле полной вероятности и найдем Р(Hi/А).

Р(Нi/A) =

Это следствие из теоремы умножения и формулы полной вероятности называется формулой Байеса или теоремой гипотез.

Вероятности гипотез Р(Нi), входящие в формулу полной вероятности, называют априорными, т.е. «до опытными». Пусть опыт произведен и его результат известен, т.е. мы знаем, произошло или не произошло событие А. Получившийся результат мог произойти при осуществлении какой-то одной гипотезы Нi. Дополнительная информация об исходе опыта перераспределяет вероятности гипотез. Эти перераспределенные вероятности гипотез Р(Нi/A) называют апостериорными , т.е. «после опытными».

Пример В одной из корзин 1 камешек и 4 кусочка хлеба, во второй – 4 камешка и 1 кусочек хлеба. Мышка наугад выбирает корзину, бежит к ней и вытаскивает кусочек хлеба - событие А (предполагается, что он затем вновь возвращается в корзину). Какова вероятность события А? Каковы вероятности того, что второй раз мышка побежит к первой корзине, ко второй корзине? Какова вероятность того, что она второй раз вытащит кусочек хлеба?

Рассмотрим гипотезы

Н1 – мышка бежит к первой корзине,

Н2 – мышка бежит ко второй корзине.

Р(Н1) =1/2 = Р(Н2) (априорные вероятности)

.

Р(Н1/A)

Р(Н2/A) (апостериорные вероятности).

При втором подходе

Мышка обучилась, второй раз она выберет первую корзину с большей вероятностью и добьется большего успеха.

Заметим, что это – один из основных принципов обучения кибернетических систем.

 

Лекция 3.



<== предыдущая лекция | следующая лекция ==>
Формула полной вероятности | Случайные величины


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.006 сек.