Пусть производится n независимых одинаковых испытаний.
Событие А в каждом из испытаний может появиться с вероятностью p, и не появиться с вероятностью q=1-p.
Тогда вероятность того, что событие А появится m раз из n находится по формуле:
– формула Бернулли.
Примером использования теоремы Бернулли может служить повторная выборка согласных (А) и гласных ( ) фонем из определённого текста. Предположим, что в некотором тексте длиной в n фонем имеется m гласных и n-m согласных. Требуется определить, что среди извлечённых N фонем ровно x окажутся согласными, причём порядок следования согласной и гласной фонем безразличен.
При составлении алгоритмов пословного машинного перевода и информационного поиска возникают задачи, связанные с прогнозированием появления в сегментах заданной длины определённого числа словоформ, морфем или словосочетаний, принадлежащих к некоторым классам. Формула Бернулли позволяет решать задачи такого типа, при условии, что сохраняется взаимная независимость образующих данный сегмент словоформ.
Пример. [Пиотровский, 1977, с. 153]. Относительная частота появления существительных в подъязыке английской электроники близка к 1/3(априорная вероятность). Примем, что типовым синтаксически оформленным сегментом в английских научно-технических текстах является простое предложение, а также главное и придаточное предложение длиной в 10 словоформ. Считая появление отдельных словоформ в этих сегментах независимыми событиями текста, определить вероятность того, что из 10 словоупотреблений, составляющих типовой сегмент ровно 2 будут существительными.
Решение. Так как появление существительных в типовом сегменте – события независимые, и вероятность появления каждого из существительных одинакова, то можно найти искомую вероятность по формуле Бернулли: , где p=1/3; q=1-1/3=2/3;
.
Ответ: вероятность появления двух существительных в типовом сегменте английского текста по электронике равна 19,5 %