русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Процесс ортогонализации.


Дата добавления: 2014-10-02; просмотров: 1464; Нарушение авторских прав


Пусть линейно не зависимая система векторов. Следующий процесс позволяет строить эквивалентную ей ортогональную систему векторов:

Положим , , …, … . Процесс не может быть продолжен только в случае, когда . Но тогда , и, значит, , что противоречит линейной независимости исходной системы векторов.

Ортогональность построенной системы проверяется непосредственно. Допустим, ортогональность системы векторов установлена. Покажем, что вектор ортогонален всем векторам, построенным ранее него. Действительно, , где k=1,2,…i-1. В силу ортогональности системы векторов в сумме из правой части равенства только одно не нулевое слагаемое, получаемое при j=k. Следовательно, .

Следствие 2.1 В любом подпространстве конечномерного евклидова пространства имеется ортогональный базис.

Доказательство. Возьмем базис подпространства и применим к нему процесс ортогонализации. В результате будет построена ортогональная система векторов (а, значит, и линейно независимая) из этого подпространства. Поскольку количество векторов в построенной системе совпадает с размерностью подпространства, то, следовательно, построенная ортогональная система векторов является базисом подпространства.

Следствие 2.2. Любую ортогональную систему векторов можно дополнить до ортогонального базиса всего пространства.

Доказательство. Пусть - ортогональная система векторов. Дополним ее до базиса всего пространства векторами и к полученной системе применим процесс ортогонализации. В результате будет построен ортогональный базис всего пространства. Поскольку первые k векторов были ортогональны, то в процессе ортогонализации они не изменились, т.е. ,…, . Таким образом, векторы дополняют ортогональную систему до ортогонального базиса всего пространства.

Следствие 2.3. Пусть - базис пространства, а - ортогональный базис пространства, полученный из базиса процессом ортогонализации. Тогда матрица перехода от одного базиса к другому является треугольной, и на ее главной диагонали стоят 1.



Доказательство. Согласно процессу ортогонализации имеем , , …, …, а, значит, матрица перехода P (ее столбцы – координаты базисных векторов) равна .


 



<== предыдущая лекция | следующая лекция ==>
Ортогональность. | Ортогональное дополнение. Ортогональная проекция и составляющая.


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.003 сек.