русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Ортогональное дополнение. Ортогональная проекция и составляющая.


Дата добавления: 2014-10-02; просмотров: 1610; Нарушение авторских прав


Пусть V – евклидово пространство со скалярным произведением (x,y), W – подпространство V.

Множество всех векторов x, ортогональных всем векторам из W, которое обозначим , называется ортогональным дополнением к подпространству W. Опишем свойства ортогонального дополнения.

Свойство 2.3. - линейное подпространство V.

Доказательство. Пусть , тогда справедливы равенства и . Из этих равенств выводим равенства и , то есть . Тем самым свойство доказано.

Свойство 2.4 .

Доказательство. Построим ортогональный базис подпространства W и дополним его до ортогонального базиса всего пространства V. Векторы ортогональны векторам , а, значит и любому вектору из W. Следовательно, векторы принадлежат ортогональному дополнению к W. Разложим произвольный вектор x по базису и положим , . Поскольку x=y+z и , , то установлено равенство .

Покажем, что сумма прямая. Пусть , тогда (x,x)=0 как скалярное произведение вектора из W на вектор из ортогонального дополнения к W. Единственный вектор нулевой длины равен 0, и, значит, пересечение содержит только нулевой вектор и сумма прямая.

Следствие 2.4 .

Доказательство вытекает из свойства прямой суммы подпространств.

Любой вектор x пространства V можно представить в виде суммы вектора y из подпространства W и вектора z из , причем векторы y и z определяются единственным образом. Вектор y называется ортогональной проекцией x на W и обозначается , а вектор z – ортогональной составляющей вектора x и обозначается . О способах построения ортогональной проекции и ортогональной составляющей будет разговор в п.2.6.

Свойство 2.5. .

Доказательство. Применив Следствие 2.4, получим . Пусть x – произвольный вектор из W. Поскольку для произвольного вектора скалярное произведение (x,y)=0, то . Тем самым показано включение , из которого, в силу совпадения размерностей, выводим равенство .



Пусть базис W. Вектор z принадлежит ортогональному дополнению к W тогда и только тогда, когда , , …, . Пусть базис пространства V. В координатах, эти равенства превращаются в систему линейных уравнений . Взяв в качестве W ортогональное дополнение к нему, получим следующее утверждение.

Свойство 2.6. Любое подпространство может быть задано системой линейных однородных уравнений.

В случае, если базис ортонормированный, коэффициентами при неизвестных в системе линейных уравнений являются координаты базисных векторов ортогонального дополнения.


 



<== предыдущая лекция | следующая лекция ==>
Процесс ортогонализации. | Геометрический смысл определителя матрицы Грама. Неравенство Адамара.


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.033 сек.