русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Обратная матрица


Дата добавления: 2014-10-02; просмотров: 862; Нарушение авторских прав


Квадратная матрица n-го порядка, у которой по диагонали 1, а все остальные элементы 0, называется единичной и обозначается E.

Для любой матрицы A справедливы равенства AE=EA=A. Таким образом, единичная матрица играет роль 1 среди матриц.

Определение 6.1. Матрица B называется обратной к матрице A, если AB=BA=E. Обратная матрица обозначается .

Понятие обратной матрицы существует только для квадратных матриц.

Свойство 6.1. Если обратная матрица существует, то она единственна.

Доказательство проведем методом от противного. Пусть существует две обратные матрицы к A, которые обозначим через B и C. Рассмотрим произведение BAC. С одной стороны (BA)C=EC=C, а с другой B(AC)=BE=B. Результат не зависит от способа расстановок скобок, поэтому B=C.

Определение 6.2. Матрица называется невырожденной, если ее определитель отличен от 0.

Теорема 6.1. Необходимым и достаточным условием существования обратной матрицы к A является ее невырожденность.

Доказательство. Пусть к матрице A существует обратная . Из равенства следует равенство определителей , откуда .

Пусть . Построим матрицу B, элементы которой равны . Найдем AB. Элемент матрицы произведения, стоящий на пересечение строки i и столбца j равен . Сумма является разложением по строке j определителя матрицы, отличающейся от матрицы A только строкой j, вместо которой стоит строка i. Если , то эта матрица имеет две одинаковые строки и ее определитель равен 0. Если i=j, то получаем матрицу A. Таким образом, элемент матрицы произведения, расположенный на пересечении строки i и столбца j равен 0 при и 1 при i=j, то есть AB=E. Аналогично, проверяется равенство BA=E.Следовательно, матрица B – обратная к A.

Следствие 6.1 Если BA=E или AB=E, то .

Доказательство. Если BA=E, то матрица A – невырожденная, и к ней существует единственная обратная матрица. Далее, или .





<== предыдущая лекция | следующая лекция ==>
Формула Бине-Кощи | Правило Крамера


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.004 сек.