русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Присоединение корня. Поле разложения многочлена.


Дата добавления: 2014-10-02; просмотров: 1697; Нарушение авторских прав


Пусть f(x) - неприводимый многочлен степени n над числовым полем P, и пусть корень этого многочлена в некотором числовом поле T (P содержится в T). Построим наименьшее поле, содержащее поле P и . Легко убедится, что числа вида , где принадлежат этому полю. Обозначим множество этих чисел .

Теорема 2.12 Множество является числовым полем.

Доказательство. Замкнутость относительно сложения, вычитания, умножения очевидна. Покажем замкнутость относительно деления. По числу построим многочлен из P(x). Наибольший общий делитель многочленов a(x) и f(x) равен 1 (в силу неприводимости f(x)), следовательно, найдутся многочлены u(x) и v(x) из P(x), что u(x)f(x)+v(x)a(x)=1. Подставим вместо x значение . Получим равенство . Поскольку , и , то теорема доказана.

В качестве можно брать любой корень многочлена f(x). В результате будут получаться различные поля .

Определение 2.3 Числовые поля называются изоморфными, если существует взаимно однозначное соответствие, сохраняющее операции +,*.

Следствие 2.5 Пусть f(x) - неприводимый многочлен над полем P, и a, b - его корни в некотором поле T. Тогда поле P(a) изоморфно полю P(b).

В приведённых выше построениях везде фигурировало поле T, которое содержало корень многочлена. Избавимся от этого поля. Это можно сделать следующим образом. Обозначим через P[x] множество остатков от деления многочленов из P(x) на неприводимый многочлен f(x) (над P). На этом множестве определим операции сложения и умножения. Сложение - обычное сложение многочленов, а в качестве результата умножения многочленов возьмём остаток от деления их произведения на f(x). В результате получим множество многочленов над которыми определены операции сложения и умножения, причём это множество изоморфно P(a), где a - корень f(x) в некотором поле T. При построении поля P[x] поле T никак не участвует.



Говорят, что поле P[x] получено присоединением корня f(x). При этом вопросом о существовании поля, в котором f(x) имеет корень, можно не задаваться. Следует отметить, что элемент x поля P[x] является корнем f(x).

Теорема 2.13 Пусть f(x) - многочлен над полем P. Тогда существует поле T (P содержится в T) над которым многочлен f(x) разлагается на линейные множители

Доказательство. Разлагаем f(x) на неприводимые множители. Если все множители линейны, то теорема доказана. В противном случае возьмём неприводимый многочлен степени больше 1 и присоединим его корень. Далее, повторим рассуждения. Процесс бесконечно продолжаться не может из-за конечности степени f(x).

Поле, над которым многочлен разлагается на линейные множители, называется полем разложения многочлена.



<== предыдущая лекция | следующая лекция ==>
Рациональные корни. | Формальная производная, ее свойства


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.005 сек.