русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Критерий Эйзенштейна


Дата добавления: 2014-10-02; просмотров: 4161; Нарушение авторских прав


Теорема 2.11 (Критерий Эйзенштейна) Пусть f(x) многочлен над кольцом целых чисел. Если существует простое число p, что

I. Все коэффициенты многочлена f(x), кроме старшего, делятся на p

II. Старший коэффициент не делится на p

III. Свободный член не делится на

Тогда многочлен f(x) неприводим над полем рациональных чисел.

Доказательство проведём методом от противного. Допустим многочлен h(x) удовлетворяет условиям теоремы и тем не менее представим в виде произведения двух многочленов f(x)g(x). Естественно, все многочлены с целыми коэффициентами. Поскольку , то либо делится на p, либо делится на p (оба сразу делиться не могут, из-за условия III). Пусть, для определённости делится на p, а не делится на p. Из равенства , делимости и на p, и не делимости на p, выводим делимость на p. Продолжив рассуждения, придём к тому, что все коэффициенты f(x) делятся на p, что противоречит условию I.

Следует отметить, что критерий Эйзенштейна даёт достаточные условия неприводимости многочленов, но не необходимые. Так многочлен является неприводимым над полем рациональных чисел, но не удовлетворяет критерию Эйзенштейна.

Следствие 2.3 Над полем рациональных чисел найдётся неприводимый многочлен степени n, где n любое натуральное число больше 1.

Действительно, многочлен , по критерию Эйзенштейна, является неприводимым.

Следствие 2.4 Для простого n многочлен неприводим над полем рациональных чисел.

Доказательство. Разложим многочлен по степеням x-1 . Многочлен удовлетворяет критерию Эйзенштейна, и, значит, является неприводимым. Но тогда неприводим и многочлен .



<== предыдущая лекция | следующая лекция ==>
Примитивный многочлен, его свойства | Рациональные корни.


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.003 сек.