русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Примитивный многочлен, его свойства


Дата добавления: 2014-10-02; просмотров: 4734; Нарушение авторских прав


Определение 2.2Многочлен над кольцом целых чисел называется примитивным, если наибольший общий делитель его коэффициентов равен 1.

Многочлен с рациональными коэффициентами единственным образом представляется в виде произведения положительного рационального числа и примитивного многочлена. Рациональное число называют содержанием многочлена.

Теорема 2.10 Произведение примитивных многочленов есть примитивный многочлен.

Доказательство проведём методом от противного. Пусть произведение двух примитивных многочленов и есть не примитивный многочлен . Найдётся простое число p, которое делит все коэффициенты многочлена h(x) без остатка. Пусть -самый младший (с наименьшим номером) коэффициент f(x), не делящийся на p без остатка (такой найдётся в силу примитивности многочлена), а - самый младший коэффициент g(x), не делящийся на p без остатка. Коэффициент многочлена h(x) при вычисляется по формуле . Слагаемое делится на p без остатка при s<i, так как левый множитель кратен p, а при s>i, так как правый множитель кратен p. Единственное слагаемое, которое не делится на p, получается при s=i. Следовательно, вся сумма не делится на p, а значит не все коэффициенты h(x) делятся на p, что противоречит сделанному допущению. Тем самым теорема доказана.

Следствие 2.2. Если многочлен с целочисленными коэффициентами приводим над полем рациональных чисел, то он приводим над кольцом целых чисел.

Доказательство. Разложим многочлен над полем рациональных чисел. Каждый множитель представим в виде произведения его содержания и примитивного многочлена. Произведение примитивных многочленов суть примитивный многочлен, поэтому произведение содержаний множителей равно содержанию исходного многочлена. Для завершения доказательства осталось заметить, что содержание исходного многочлена есть целое число.



Таким образом, задача разложения многочлена на неприводимые множители над полем рациональных чисел сводится к аналогичной задаче над кольцом целых чисел.



<== предыдущая лекция | следующая лекция ==>
Интерполяционный многочлен в форме Ньютона | Критерий Эйзенштейна


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.004 сек.