русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Интерполяционный многочлен в форме Ньютона


Дата добавления: 2014-10-02; просмотров: 823; Нарушение авторских прав


Пусть f(x) – произвольный многочлен. Под разностью первого порядка будем понимать . Индукцией определим разность порядка k .

Свойство 1

.

Доказательство проведём индукцией по порядку разности. При k=1 имеем . Основание индукции положено. Пусть утверждение верно для всех разностей порядка k-1. Покажем его справедливость для всех разностей порядка k. По определению . Подставим вместо разностей k-1 порядка их выражения, получим После приведения подобных в правой части равенства получим требуемое утверждение.

Свойство 2

Разность не зависит от порядка, в котором расположены ее аргументы

Доказательство вытекает из свойства 1.

Свойство 3

Если степень многочлена f(x) равна n, то разность порядка k есть многочлен степени n-k при n k и 0 при n<k.

Доказательство проведём индукцией по k. При k=1 имеем . Числителем дроби является многочлен , причём . Следовательно, по теореме Безу многочлен делится без остатка на двучлен . Тем самым основание индукции доказано. Пусть утверждение верно для разностей порядка k-1. Покажем его справедливость для разностей порядка k. По определению разности порядка k имеем . По предположению индукции числитель этой дроби многочлен степени n-k+1. Кроме того (свойство 2) и по теореме Безу многочлен делится без остатка на двучлен . Свойство доказано.

Свойство 4

f(x)=f(a1)+(x-a1)f(a1,a2)+…+(x-a1)…(x-ak-1)f(a1,….ak)+ +(x-a1)…(x-ak)f(x,a1,….ak)

Доказательство. Из определения разности порядка k выразим разность меньшего порядка . Продолжив этот процесс получим искомую формулу.



<== предыдущая лекция | следующая лекция ==>
Интерполяционный многочлен в форме Лагранжа | Примитивный многочлен, его свойства


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.005 сек.