русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Неприводимый многочлен, его свойства


Дата добавления: 2014-10-02; просмотров: 1531; Нарушение авторских прав


Многочлен называется неприводимым над числовым полем, если он не делится на многочлены меньшей степени (исключая константы)

Теорема 2.7 Пусть многочлен f(x) неприводим. Тогда

I. Из вытекает, либо , либо .

II. Если неприводимый многочлен делится на неприводимый многочлен, то они отличаются числовым множителем.

Доказательство.

Докажем первое утверждение. Если , то утверждение верно. Пусть не делится на , тогда и найдутся многочлены и , что . Умножим полученное равенство на : . В левой части равенства все слагаемые делятся на , следовательно, .

Второе утверждение следует непосредственно из определения неприводимого многочлена.

Теорема 2.8 Многочлен над числовым полем единственным образом раскладывается в произведение неприводимых многочленов, с точностью до перестановки сомножителей и числовых множителей.

Доказательство проведём индукцией по числу сомножителей. Если многочлен имеет один сомножитель, то он неприводим, и теорема верна. Пусть теорема верна для любого многочлена, разлагающегося на не более n-1 сомножителей. Допустим, найдётся многочлен, имеющий как минимум два разложения на неприводимые множители ( ). Поскольку произведение делится на , то найдётся номер i, что делится на . Переставим сомножители так, чтобы i=s. Многочлены и отличаются числовым множителем . Следовательно, . По предположению индукции s-1=n-1 и сомножители отличаются только порядком и числовыми коэффициентами. Теорема доказана.



<== предыдущая лекция | следующая лекция ==>
Разложение рациональных функций в сумму дробей. | Интерполяционный многочлен в форме Лагранжа


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.003 сек.