русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Бином Ньютона, треугольник Паскаля


Дата добавления: 2014-10-02; просмотров: 1085; Нарушение авторских прав


Рассмотрим бином (a+b)n. Если раскрыть скобки, привести подобные, то получившиеся сумма состоит из слагаемых вида aibn-i с некоторыми числовыми коэффициентами. Например: (a+b)2=a2b0+2ab+a0b2. В общем случае можно записать , где - числовой коэффициент. Из тождества (a+b)n=(a+b)(a+b)n-1 выводим равенства и , которые позволяют строить треугольник Паскаля. Приведём первые его 4 строки . Число, расположенное в треугольнике Паскаля на пересечении строки n и столбца m, равно

· 1, если m=0, или m=n,

· сумме элементов предыдущей строки, расположенных в столбцах m и m-1, если .

Таким образом, элементы треугольника Паскаля суть биномиальные коэффициенты. В частности .

Обозначим через произведение натуральных чисел от 1 до n. Для удобства обозначений положим .

Теорема 1.1 Биномиальный коэффициент вычисляется по формуле .

Доказательство проводится индукцией по n. При n=1 утверждение очевидно. Пусть оно верно при n-1. Покажем его справедливость для n. Если m=0, то . Если m=n, то . Если , то . По предположению индукции . Теорема доказана.



<== предыдущая лекция | следующая лекция ==>
Метод математической индукции. | Числовые кольца, поля


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.003 сек.