русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Способ вращения вокруг линии уровня


Дата добавления: 2014-09-29; просмотров: 1571; Нарушение авторских прав


 

Этот способ применяется в основном для решения задачи преобразования плоскости общего положения в плоскость уровня. Суть способа заключается в том, что плоскость общего положения, поворачивается вокруг прямой уровня до состояния, параллельного горизонтальной плоскости проекций П1 либо фронтальной П2.

 

Рассмотрим поворот точки А вокруг горизонтали a до уровня горизонтали. Точка А движется по дуге окружности радиуса R с центром в точке O, принадлежащей горизонтали a. Радиус R является гипотенузой прямоугольного треугольника А0А1O, где один катет А1О - горизонтальная проекция радиуса вращения, другой - равен Dz - расстояние между точкой A и прямой a по вертикали. А' - новое положение точки А.

 

Алгоритм графических построений:

1.Через А1 проводим горизонтальную проекцию дуги по которой поворачивается точка А. Это будет прямая, перпендикулярная прямой a1;

На пересечении прямой a и проекции дуги отмечаем точку O1;

2. Строим прямоугольный треугольник A1A0O1. Попутно мы решили задачу нахождения расстояния между прямой и точкой. Отрезок A0O1 - расстояние от точки A до прямой a;

3. Обратите внимание, на то, что построения, выполняемые на верхнем демонстрационном чертеже выполняются в вертикальной плоскости, а на ортогональном чертеже мы делаем те же построения, только в горизонтальной плоскости. На результат построений такой прием не влияет;

Проводим дугу A0A1' с центром в точке O1. А1' - новая проекция точки А;

4. Подняв от A1' линию проекционной связи до пересечения с a2 находим A2'.

Лекция №2



<== предыдущая лекция | следующая лекция ==>
Способ вращения вокруг проецирующей прямой | МНОГОГРАННЫЕ ПОВЕРХНОСТИ


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.005 сек.