5.1 Изображение многогранников на ортогональном чертеже
Многогранники – замкнутые пространственные фигуры, ограниченные плоскими многоугольниками. Вершины и стороны многогранников являются вершинами и ребрами многогранников. Они образуют пространственную сетку. Если вершины и ребра многогранника находятся по одну сторону плоскости любой из его граней, то многогранник называют выпуклым, все его грани – выпуклые.
Из всего многообразия многогранников наибольший практический интерес представляют призмы, пирамиды, правильные многогранники и их разновидности.
Многогранник, две грани которого n-угольники в параллельных плоскостях, а остальные n-граней - параллелограммы, называется n-угольной призмой. Многогранники являются основаниями призмы, а параллелограммы – боковыми гранями призмы.
Многогранник, у которого одна из граней – произвольный многоугольник, а остальные грани – треугольники, имеющие общую вершину, называются пирамидой. Грань–многоугольник называют основанием призмы, а треугольники – боковыми гранями пирамиды. Общая вершина треугольников называется особой вершиной пирамиды (обычно, просто вершиной).
Если пирамиду отсечь плоскостью параллельной основанию, то получим усеченную пирамиду.
Многогранник называется метрически правильным, если все его грани являются правильными многоугольниками. К ним относятся куб, тетраэдр, октаэдр, икосаэдр, додекаэдр.
Под изображением многогранников на чертеже будем понимать изображение ограничивающей его многогранной поверхности, т.е. изображение совокупности составляющих ее многогранников. Графически простую многогранную поверхность удобно задавать проекциями ее сетки.
На рисунке многогранник АВСDА'В'С'D' задан проекциями его ребер и вершин (сетки), где А1А'1 | | В1В'1 | | С1С'1 | | D1D'1 и А2А'2 | | В2В'2 | | С2С'2 | | D2D'2. Значит ребра многогранника параллельны. Параллельны соответственные стороны многоугольника АВСD и А'В'С'D'. Грани АВВА, ВССВ, СDDС и ADDA являются параллелограммами. Отсюда следует, что на чертеже задана призма. Четырехугольник ABCD плоский, т. к. его диагонали пересекаются в точке 1.
На этом же чертеже показано построение горизонтальной проекции K1 точки K по заданной ее фронтальной проекции K2 из условия принадлежности точки K грани BB'C'C. Горизонтальная проекция точки K построена с помощью вспомогательной прямой 23, проведенной через точку K в плоскости BB'C'C.
Такой чертеж многогранной поверхности АВСDА'В'С'D', когда можно построить проекцию любой точки, принадлежащей многогранной поверхности называется полным. На этом чертеже можно решать любые позиционные и метрические задачи.