Теперь рассмотрим пример пересечения двух плоскостей общего положения. Для построения линии пересечения двух плоскостей a и b необходимо найти две точки, N и M каждая из которых принадлежит обеим плоскостям. Для нахождения точек N и M можно воспользоваться следующим алгоритмом:
1. Взять две дополнительные плоскости частного положения 1ЧП и 2ЧП;
2. Определить линии пересечения плоскостей частного положения 1ЧП и 2ЧП с плоскостями общего положения a и b с помощью метода, приведенного в предыдущем пункте;
3. Определить точки N и M пересечения полученных линий.
Выполним построения:
1. Возьмем плоскости общего положения a и b. Плоскость a задана пересекающимися прямыми a и b. Плоскость b задана параллельными прямыми c и d.
2. Возьмем плоскости частного положения 1ЧП и 2ЧП перпендикулярные к П1.
3. Найдем точки пересечения 1ЧП и 2ЧП с прямыми, задающими плоскости a и b. Опустим линии связи и получим проекции линий пересечения плоскостей на П1.
4. Теперь найдем две точки N1 и M1 пересечения полученных линий (синие на чертеже). Обратите внимание, что нас интересуют точки пересечения тех линий, которые получены пересечением одной плоскости частного положения с двумя общего. То есть, например, точка N при таком построении является точкой пересечения линий пересечения 1ЧП с a и b и соответственно принадлежит и a и b.
5. Поднимаем линии связи и получаем вторые проекции точек M и N.
6. Точки M и N принадлежат одновременно a и b, поэтому MN - линия пересечения a и b.
1.5. СПОСОБЫ ПРЕОБРАЗОВАНИЯ ПРОЕКЦИЙ
Решение позиционных и метрических задач становится проще, если геометрические фигуры находятся в частном положении относительно плоскостей проекций. Для того, чтобы геометрические фигуры заняли частное положение, необходимо выполнить преобразование чертежа. Существует несколько способов преобразования ортогонального чертежа: