русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

РЯДЫ ФУРЬЕ


Дата добавления: 2014-09-25; просмотров: 4676; Нарушение авторских прав


Напомним некоторые сведения из предыдущих разделов математики.

Функция называется кусочно-монотонной на отрезке , если этот отрезок можно разбить на конечное число интервалов таким образом, чтобы в каждом из них функция была монотонной, т.е. либо не возрастающей, либо не убывающей.

Функция называется периодической с периодом , если для любого значения аргумента из области определения функции имеет место равенство

.

Для таких функций результат интегрирования в пределах, отличающихся на , не зависит от выбора нижнего предела интегрирования, т.е. для любого

(23)

Функция , описывающая гармоническое колебание, имеет период .

Функции будем называть гармониками. Их можно представить также в виде

,

где ; .

Сумма гармоник , являясь периодической, уже не будет гармоникой. Можно поставить обратную задачу. Можно ли периодическую функцию представить в виде такой суммы?. Оказалось, что при определенных условиях, сформулированных в теореме Дирихле (см. ниже), периодическую функцию с периодом можно представить в виде суммы бесконечного числа гармоник, называемой тригонометрическим рядом.

. (24)

Если коэффициенты ряда (24) определяются по формулам

,

, (25)

,

то их называют коэффициентами Фурье, а сам ряд - рядом Фурье.

Говорят, что функция удовлетворяет условиям Дирихле, если она непрерывна на отрезке за исключением, быть может, конечного числа точек разрыва первого рода, а также кусочно-монотонна на этом отрезке.

ТЕОРЕМА 12.(Теорема Дирихле)

Если периодическая функция с периодом удовлетворяет на отрезке условиям Дирихле, то ряд Фурье этой функции сходится во всем отрезке и сумма этого ряда равна:

1) во всех точках непрерывности функции ;

2) полусумме пределов функции слева и справа, т.е., если является точкой разрыва первого рода, то .



.

Из теорем (11) и (12) следует, что класс функций представляемых в виде ряда Фурье шире класса функций, разлагаемых в ряд Тейлора, так как для последнего необходимо существование производных функций любого порядка.

В ряде практических задач электросвязи рассматриваются периодические функции с . Тогда и формулы 24-25 упрощаются

(26)

,

, (27)

.

Замечания:

1. Учитывая формулу (23), при нахождении коэффициентов Фурье целесообразно в качестве пределов интегрирования использовать границы области задания функции. Например, если - периодическая функция задана на отрезке , в формулах (27) следует интегрировать от нуля до .

 

2. Если функция - четная, то коэффициенты =0, а остальные коэффициенты можно найти по формулам

 

, . (28)

Если же функция - нечетная, то и , а

 

. (29)

 

Ряд Фурье можно представить в амплитудно - фазовой форме. Пусть

, ,

Тогда , , .

, (30)

где - амплитуда, а - начальная фаза гармоники.

 

 

Пример 31. Разложить в ряд Фурье функцию f(x), заданную на промежутке длиной, равной периоду

 

Изобразить диаграмму спектра амплитуд.


Решение.

Рис. 1. График функции

По формулам (25) находим коэффициенты ряда.

Если n - четное , . При нечетном n , .

Ряд Фурье имеет вид

Рис. 2. иллюстрирует представления функции , описывающей периодический сигнал прямоугольной формы, через сумму нескольких первых членов ряда. Видно, что с ростом частичные суммы все точнее представляют .

а)

б)

 

в)

 

Рис. 2. Графики суммы двух(а), трех (б) и пяти(в) членов ряда

График суммы ряда в точках непрерывности функции совпадает с графиком (рис. 1), а в точках разрыва (см. теорему Дирихле). Так как , то .

 
 

 

 


1 2 3 4 5 6

 

Рис.3. Спектр амплитуд

Пример 32. Разложить функцию f(x) в ряд Фурье по косинусам, продолжив в симметричный интервал. Нарисовать график суммы ряда S(x). Найти значения суммы

 

Решение. Продолжив функцию на интервале (-1,0) четным образом, и далее с периодом , получим сумму ряда .

 

Рис. 4. Графики функций и

 

Определим коэффициенты Фурье и .

.

Вычислим эти интегралы отдельно, используя для первого интеграла формулу интегрирования по частям .

.

Получаем ряд Фурье:

Найдем значение суммы в точках . На отрезке

.

.

Для вычисления используем свойства четности и периодичности .

.

 

 



<== предыдущая лекция | следующая лекция ==>
РЯДЫ ТЕЙЛОРА И МАКЛОРЕНА | Ряд Фурье в комплексной форме


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.252 сек.