русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Числовые ряды.


Дата добавления: 2014-09-02; просмотров: 734; Нарушение авторских прав


 

Рассмотрим систему дифференциальных уравнений:

, где a,b,c,d – числа.

- искомая функция - функции переменной х

продифференцируем по переменной х первое уравнение системы:

 

(1)

Подставим из (2)

подставим из (1)

перенесем слагаемые с и налево

получим линейное неоднородное дифференциальное уравнение 2 порядка с постоянными коэффициентами. Решая это уравнение получим , продифференцируем и найдём .

Числовые ряды.

 

Определение:Рассмотрим бесконечную числовую последовательность:

числовым рядом называется выражение , где – общий член ряда.

Пример:

-знакоположительный ряд

-знакочередующийся ряд

Последовательность , где ; ; - последовательность частичных сумм ряда.

Каждая частичная сумма содержит конечное число слагаемых.

Числовой ряд называется сходящимся, если существует конечный

 

, то ряд называется расходящимся и суммы S не имеют.

1)Рассмотрим ряд из членов геометрической прогрессии.

, где n – частичная сумма ряда - сумма n первых членов геометрической прогрессии.

Рассмотрим 3 случая:

1) геометрическая прогрессия убывающая.

сходится и имеет сумму

2)

3)

= не существует – ряд расходится.

Вывод: ряд из членов геометрической прогрессии сходится если и расходится .

 



<== предыдущая лекция | следующая лекция ==>
Решение систем линейных дифференциальных уравнений 1 порядка с постоянными коэффициентами способом подстановки. | Элементарные свойства рядов.


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.222 сек.