русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Скалярное, векторное, смешанное произведение векторов


Дата добавления: 2014-05-19; просмотров: 2613; Нарушение авторских прав


Определение.Скалярным произведением двух векторов называется число, равное произведению длин векторов на косинус угла:

Вычисляется как сумма произведений соответствующих координат этих векторов (a,b) = x1x2 + y1y2 + z1z2.

Определение.Векторное произведение двух векторов – это вектор,перпендикулярный векторам aи b,образующий с ними правую тройку и имеющий длину

Вычисляется как определитель .

Геометрически длина векторного произведения равна площади параллелограмма, построенного на этих векторах.

Определение.Смешанное произведение трех векторов это число,равное скалярному произведению третьего вектора на векторное произведение первых двух (a, b, c) = (a×b, c).

Вычисляется как определитель

 

Геометрически модуль смешанного произведения векторов равен объёму параллелепипеда, построенного на этих векторах.

Если смешанное произведение равно нулю, то вектора лежат в одной плоскости, т. е. компланарны.

1.25. В таблице 1.14 заданы векторы , Вычислить:

1) ; 2) ; 3) ; 4) ;

5) угол между векторами и .

 

Таблица 1.14

(4, –2, –4) (1, 4, –2) (1, 1, 1) (0, 1, 1)
(5, –1, 3) (3, 1, 1) (1, –1, 0, ) ( –1, 1, 0)

 

1.26. Найти и построить вектор = , если:

1) = 2 , = 3 ; 2) = , = ;

3) = = .

Определить в каждом случае площадь параллелограмма, построенного на векторах и .

1.27. Найти × , синус угла между векторами и , если:

1) = (1, –5, – 3), = (–2, 4, 3);

2) = (3, –2, 6), = (6, 3, –2);

3) = (3, 0, –4), = (1, –2, 2).

1.28. Найти площадь треугольника с вершинами:

1) А (2; 2; 2), В (1; 3; 3), С (3; 4; 2);

2) А (–3; –2; –4), В (–1; –4; –7), С (1; –2; 2).

1.29. Найти смешанное произведение , и , если:



1) = (1, 1, 2), = (1, –2, 3), = (2, 1, 1);

2) = (5, –2, –1), = (1, –2, 1), = (1, 2, –2).

1.30. Установить, компланарны ли векторы:

1) = (1, 1, 3), = (0, 2, –1), = (1, –1, 4);

2) = (1, 2, 2), = (2, 5, 7), = (1, 1, –1).

1.31. Вычислить объем параллелепипеда, построенного на векторах
= (3, 2, 1), = (1, 0,–1), = (1, –2, 1).

1.32. Треугольная пирамида задана координатами своих вершин
1) А (–1; 1; 0), В (2;–2; 1), С (3; 1; –1), Д (1; 0; –2).

2) А (–4; –4; –3), В (–2;–1; 1), С (2; –2; –1), D (1; 3; –2).

Найти: угол <ДАВ; S – площадь грани АВС, V – объём пирамиды, высоту пирамиды.

Решение.

1) Найдём векторы и :

= (1 + 1; 0 – 1; – 2– 0) = (2; –1; –2), = (2 + 1; –2–1; 1 –0) = (3; –3; 1),

,

.

2) Найдем вектор = (4; 0; –1), тогда векторное произведение

Его длина равна площади параллелограмма, построенного на этих векторах. Вычислим: .

Тогда площадь ∆АВС равна половине площади параллелограмма:

3) Найдём смешанное произведение:

= 0 + 4+ 6 – (0+24+3)= –17.

, ,

Значит,

4) Т.к. , то можно найти высоту пирамиды

 

Линейные операторы. Собственные векторы и собственные значения

Любую квадратную матрицу можно рассматривать как линейный оператор, действующий на векторах. Матрица линейного оператора строится следующим образом: фиксируем базис линейного пространства (е1, е2) и действуем на базисные вектора данным преобразованием φ. Например, рассмотрим поворот на 60 (рис. 1.2); при этом базисные вектора переходят в вектора е1', e2'. Раскладываем эти образы по прежнему базису, коэффициенты разложения образуют столбцы матрицы линейного оператора преобразования.

e1= i =

e2 = j =

A = .

Рис. 1.2. Линейное преобразование поворота на 60˚

Определение. Вектор х называется собственным для матрицы А, если Ах = λх или (А – λЕ) х =0. Собственные числа λ являются корнями характеристического уравнения det (A – λE) = 0.

1.33. Линейный оператор в базисе задан матрицей А. Найти образ где:

1) = 4 –3 , А = ; 2) = 2 + 4 ,

А =

1.34. Проверить непосредственным вычислением, какие из данных ниже векторов являются собственными векторами матрицы А, и указать соответствующие собственные значения:

 

,

 

1.35. Найти собственные значения и собственные векторы линейных операторов, заданных матрицами:

1) А = 2) А =

3) А = 4) А =

Задача о нахождении соотношения сбалансированности торговли

Постановка задачи. Пусть имеется несколько стран с известными национальными доходами Х = (х1, х2, …, хn). Структурная матрица торговли А показывает долю национального дохода, которую страна тратит на покупку товаров других стран и внутри своей страны. Требуется найти соотношение национальных доходов для сбалансированности торговли.

Математически эта задача сводится к отысканию собственного вектора матрицы А, отвечающего собственному значению 1.

Пример 1.10. Задана структурная матрица торговли . Найти соотношение национальных доходов стран для сбалансированной торговли.

Решение:

= .

 

= = (0,5 –)٠(0,6 –) –2 = 0,3 – 0,5– 0,6 + 2 – 0,2 = 2 – 1,1 +0,1 = 0.

 

Находим корни уравнения – собственные значения матрицы. Действительно, = 1, = 0,1. Тогда, собственный вектор для= 1:
(А – 1Е)٠Х= = .

 

Имеем систему . Собственный вектор Х = (0,8; 1).

Соотношение доходов получается 0,8 : 1 или 4 : 5.

 

1.36. Структурная матрица торговли трех стран имеет вид:

 

А = .

 

Найти бюджет первой и второй стран, удовлетворяющие сбалансированной бездефицитной торговле при условии, что бюджет третьей страны равен 1100 усл. ед.

1.37. Структурная матрица торговли четырех стран имеет вид:

 

A= .

Найти бюджеты этих стран, удовлетворяющие сбалансированной бездефицитной торговле, если сумма бюджетов = 6270 усл. ед.

 



<== предыдущая лекция | следующая лекция ==>
Векторы. Линейные операции над векторами | Прямая на плоскости


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.965 сек.