русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Прямая на плоскости


Дата добавления: 2014-05-19; просмотров: 1914; Нарушение авторских прав


1.38. Составить уравнение прямой, проходящей через точку А, параллельно: 1) оси ОУ, А(2; –3); 2) оси ОХ, А(1; 2); 3) прямой 2x – 3y + 1 = 0, А(2; –3); 4) прямой x + y – 2 = 0, А(1; 2).

1.39. Составить уравнение прямой, проходящей через точку А, перпендикулярно прямой: 1) 3х – 2у + 5 = 0, А (2; –1); 2) 2х + у – 7 = 0, А(0; 3).

Задача про треугольник

Треугольник задан координатами своих вершин А(–2; 0), В(2; 4), С(4; 0). Найти: 1) уравнение стороны; 2) уравнение медианы, проведенной из вершины А; 3) уравнение высоты, проведенной из вершины А; 4) уравнение прямой, проходящей через А параллельно ВС.

1) Найдем уравнение стороны ВС по формуле уравнения прямой, проходящей через две заданные точки:

 

(1.1)

 

В(2; 4), С(4; 0), следовательно,

 

2у – 8 = –4х + 8,

2у = –4х + 16,

у = –2х + 8.

 

Рис. 1.3. Треугольник на плоскости

 

2) Найдем уравнение медианы АЕ из точки А:

Пусть Е – середина отрезка ВС. Координаты середины отрезка найдем по формулам:

Хсер = , Усер =

ХЕ = , УЕ = .

Точка Е имеет координаты Е(3; 2). Найдем уравнение прямой (АЕ) по (1.1):

–2х + 6 = – 5у + 10, 5y = 2x+4, у = 0,4 х + 0,8 –уравнение медианы.

3) Найдем уравнение высоты АD.

Т. к. прямая AD перпендикулярна прямой ВС, то из условия перпендикулярности прямых через угловые коэффициенты имеем:

kАD= = =

Уравнение прямой, проходящей через данную точку с известным угловым коэффициентом, имеет вид:

у – у0 = k (х – х0) (1.2)

 

Используя точку А(–2; 0) и k = 1/2, имеем у – 0 = 0,5(х – (–2)) или

у = 0,5х + 1 –уравнение высоты.

4) Найдем уравнение прямой, проходящей через точку А и параллельной прямой ВС.

Т. к. прямая l // BC, то их угловые коэффициенты равны kι = kВС.

kι = –2. Тогда по уравнению (1.2), зная точку А(–2; 0) и k = –2, найдем



у – 0 = – 2 (х + 2) или у = –2х – 4 –уравнение параллельной прямой.

Все уравнения полученных прямых проверьте по чертежу! Свободный член в уравнении прямой показывает её пересечение с осью ОУ.

1.40. Для треугольников, заданных координатами своих вершин найти 1) уравнение сторон; 2) уравнение медиан; 3) уравнение высот 4) уравнение прямой, проходящей через вершину, параллельно противоположной стороне, 5) угол А треугольника.

1) А(1; 1), В(2; 5), С(6; 2); 2) А(–1;–1), В(2; 5), С(4; –2);

3) А(–3; 1), В(2; 4), С(3; –1); 4) А(1;–2), В(6; 2), С(–1; 6);

5) А(–2; 3), В(4; 5), С(4; –2); 6) А(1;–3), В(3; 4), С(7; –2);

7) А(1; 3), В(8; 5), С(3; –2); 8) А(–4;–2), В(1; 5), С(3; –2);

9) А(–5; –1), В(–4; 6), С(1; 0); 10) А(1; 1), В(2; 2), С(3; –4).

1.41. А – вершина прямоугольника, противоположный угол образован осями координат. Составить уравнения сторон и диагоналей этого прямоугольника, если: 1) А (–4; 3); 2) А (2; 3).

1.42. Составить уравнение прямой, отсекающей на осях координат OX и OY отрезки: 1) а = 2 и b = –5; 2) а = –1 и b = 4.

1.43. Найти уравнение прямой, проходящей через точку А (4; 3) и отсекающей от координатного угла треугольник площадью 3 кв. ед.

1.44. Составить уравнение прямой, проходящей через точку пересечения прямых 5х – у +10 = 0 и 8х + 4у + 9 = 0 параллельно прямой х + 3у = 0.

1.45. Составить уравнение прямой, проходящей через точку пересечения прямых 2х – 3у + 5 = 0 и 3х + у – 7 = 0, перпендикулярно к прямой у = 2х.

1.46. Даны вершины параллелограмма: точки А(3; –5), В(–1, 3). Определить четвертую вершину D, противоположную В.

1.47. Известны уравнения двух смежных сторон параллелограмма
х + у + 5 = 0 и х – 4у = 0. Составить уравнения двух других сторон, если известна точка пересечения его диагоналей Р(2; –2).

1.48. Известны середины сторон треугольника АВС, это точки Р(1; 2),
Q(5;–1) и R(–4; 3). Составить уравнение его сторон.

1.49. Известны одна из вершин А(–2; 1) и уравнения двух сторон прямоугольника 3 х – 4у + 5 = 0и 4х + 3у – 7 = 0. Составить уравнения двух других сторон.

 



<== предыдущая лекция | следующая лекция ==>
Скалярное, векторное, смешанное произведение векторов | Окружность. Эллипс. Гипербола. Парабола


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.386 сек.