русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Векторы. Линейные операции над векторами


Дата добавления: 2014-05-19; просмотров: 2660; Нарушение авторских прав


В геометрии вектором называют направленный отрезок. Вектора можно складывать, вычитать, умножать на число. Если зафиксировать базис пространства, то произвольный вектор можно разложить по базису, коэффициенты этого разложения называются координатами вектора в этом базисе. Обычно рассматривают ортонормированный базис { } векторы которого имеют единичную длину и перпендикулярны друг другу. Тогда, разложив вектор по базису
= – координатная запись. Если вектора записаны в координатах, то операции сложения и умножения на число выполняются покоординатно, что согласуется с геометрическим определением суммы, разности и умножения на число.

1.21. По данным векторам , построить векторы:
= + 2 , = 0,5 – 2 и найти их координаты:

1) = (1; 2), = (2; –1); 2) = (–1; 1), = (3; 1);

3) = (–2; –2), = (1; 1); 4) = (2; 4), = (1; –1).

1.22. В треугольнике АВС проведена медиана АD. Выразить вектор через векторы = , = .

1.23. В некотором базисе даны векторы = (1; 2; 1), = (2; 1; 1),
=(–1; –2; –1). Найти все значения параметра m, при которых вектор
= (2; 3; m) линейно выражается через векторы .

Задача о разложении вектора по базису

Имеются три вектора = (–2; 0; 1), = (1; –1; 0), = (0; 1; 2). Выяснить, является ли вектор = (2; 3; 4) линейной комбинацией векторов . Найти его разложение по базису.

Решение.

Пусть =х + у + z .Необходимо найти коэффициенты разложения х, у, z.

Имеем, (2; 3; 4) = x(–2; 0; 1) + y(1; –1; 0) + z(0; 1; 2) или

(2; 3; 4) = (–2х + у; –у + z; х + 2z).

Приравняв координаты, получаем систему уравнений:

Решаем её (х, у, z) = (–1,2; –0,4; 2,6), т. е вектор имеет разложение:

=–1,2 –0,4 + 2,6 .

1.24. Даны четыре вектора , , , в таблице 1.13.

Таблица 1.13

(4, 5, 2) (3, 0, 1) (–1, 4, 2) (5, 7, 8)
(3, –5, 2) (4, 5, 1) (–3, 0, –4) (–4, 5, –2)
(–2, 3, 5) (1, –3, 4) (7, 8, –1) (1, 9, 2)
(1, 3, 5) (0, 2, 0) (5, 7, 9) (0, 4, –2)

 



Показать, что первые три из них образуют базис и найти координаты четвертого вектора в этом базисе.

 



<== предыдущая лекция | следующая лекция ==>
Контрольные задания | Скалярное, векторное, смешанное произведение векторов


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.091 сек.