Из самых общих соображений при движении в различных средах сила сопротивления движению может зависеть как от формы тела (обтекаемая или нет), так и от свойств среды, например, плотности, вязкости.
Вязкостьопределяет силу внутреннего трения жидкости (газа), которая была определена Ньютоном как
,
где - изменение скорости между слоями жидкости, находящимися на расстоянии между собой, - площадь поверхности соприкасающихся слоев, - коэффициент пропорциональности, называемый коэффициентом динамической вязкости(или просто динамической вязкостью). Размерность , как это легко вывести из приведенной выше формулы, есть . Наряду с коэффициентом динамической вязкости часто используется коэффициент кинематической вязкости
, где - плотность жидкости (газа). Размерность кинематической вязкости есть , что также легко вывести. Вязкость наряду со скоростью и размером движущегося тела определяет режим течения. Если перейти в систему координат, связанную с телом, можно считать, что тело покоится, а его обтекает поток жидкости (или газа), о режиме течения которого мы и говорим.
Режим течения может быть ламинарнымили переходнымили турбулентнымв зависимости от числа Рейнольдса , которое определяется как
.
Здесь - характерный размер тела, - его скорость относительно потока, -
плотность жидкости (газа). При (малые скорости и размеры, большая вязкость) течение спокойное, без завихрений, траектории выделенных частиц жидкости не пересекаются и повторяют линии тока. Такой режим течения называется ламинарным. При скорости велики, вокруг тела создаются вихри, за траекторией выделенной частицы жидкости трудно проследить. Такой режим течения называется турбулентным. При или такой режим течения называется переходным.
Для ламинарного режима ( ) и шарообразной формы тела аналитическая формула для силы сопротивления получена ученым Стоксом и носит название формулы Стокса:
, (9)
где - коэффициент динамической вязкости среды; - радиус шара; - его скорость относительно потока среды. Итак, формула, или закон, Стокса получена для медленного поступательного движения шара в неограниченной вязкой среде. Законом Стокса пользуются в коллоидной химии, молекулярной физике, физике аэрозолей. По закону Стокса можно определить скорость осаждения мелких капель тумана, частиц ила, коллоидных и аэрозольных частиц. Условие его применения: .
Определим предельную скорость при падении частицы, если сила сопротивления определяется формулой Стокса.
Сила тяжести равна , где - объем и плотность материала частицы; подъемная сила равна , где - плотность среды. Подъемная сила и сила сопротивления направлены противоположно скорости падения, а для установившегося движения сумма всех действующих сил равна нулю. Отсюда
.
Подставив выражение для объема частицы , получим
. (10)
Если речь идет о падении шарика в воздухе, то плотностью воздуха можно пренебречь по сравнению с плотностью материала шарика, однако при падении в более плотных средах (например, в воде) формулу (10) следует использовать в полном виде. Порядки величин динамической вязкости для разных сред таковы:
Среда
, мПа·с
Воздух
0.0182
Вода
1.002
Глицерин
Оценки показывают, что при расчете скорости падения в воздухе формула Стокса справедлива лишь для частиц микронных размеров.