русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Исправленный метод Эйлера.


Дата добавления: 2014-05-05; просмотров: 5641; Нарушение авторских прав


 

В этом методе для повышения точности используется усреднённое значение производной на рассматриваемом отрезке:

В приведённой формуле yi+1 входит в обе части уравнения и не может быть выражено явно. Чтобы обойти эту трудность, в правую часть, вместо yi+1 подставляется значение, рассчитанное по формуле Эйлера(7.4).

Получаем формулу исправленного метода Эйлера:

, (7.7)

где i = 0, 1, …., n-1 - номер узла;

xi = a + i×h - координата узла;

у0 = у(х0) - начальное условие.

 

Погрешность исправленного метода Эйлера dМ = О(h3).

Алгоритм решения ОДУ отличается от описанного ранее алгоритма метода Эйлера (рис 7.3) только алгоритмом расчета новой точки (Рис. 7.6).

 

 
 

 

 


Рис. 7.6. Алгоритм расчёта новой точки исправленным методом Эйлера:

 
 


L1- касательная к у(х) в начальной точке А, с tga0 = f(x0, y0).

т. В – значение вычисляется по формуле Эйлера.

L2 – касательная к у(х) в точке В, с tga1 = f(x1, ).

L3 – прямая через В со среднеарифметическим углом наклона.

L4 - прямая, паралельная L3, проведенная через точку А.

 

Рис. 7.6. Геометрическая иллюстрация исправленного метода Эйлера.

Пример 7.3. Решение ранее рассмотренного уравнения (пример 7.1) исправленным методом Эйлера.

y - 2×y + x2 = 1, x Î [0;1], y(0) = 1.

 

Пусть n = 10 , h = (1 - 0)/10 = 0,1.

Начальная точка x0 = 0, y0 = 1.

Рассчет первой точки.

Аналогично можно вычислить значения функции во 2, 3, ... , 10 точках.



<== предыдущая лекция | следующая лекция ==>
Модифицированный метод Эйлера (метод Рунге-Кутта 2-го порядка). | Метод Рунге-Кутта 4 порядка.


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.004 сек.