русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Модифицированный метод Эйлера (метод Рунге-Кутта 2-го порядка).


Дата добавления: 2014-05-05; просмотров: 3449; Нарушение авторских прав


 

Для повышения точности формула Эйлера применяется дважды на каждом элементарном отрезке: сначала для вычисления значения функции в середине отрезка , затем это значение используется для вычисления тангенса угла наклона касательной к графику искомой функции в середине отрезка.

 

       
 
 
   
y     _ y1 y1 y0

 

 

C

 

 

x1

 

 

Рис. 7.4. Геометрическая иллюстрация модифицированного метода Эйлера.

 

Расчётные формулы:

- значение функции в середине отрезка [x0,x1].

- значение функции в конце отрезка [x0,x1].

 

Формула модифицированного метода Эйлера:

(7.6)

где i = 0, 1, …., n-1 - номер узла;

xi = a + i×h - координата узла;

у0 = у(х0) - начальное условие.

 

Алгоритм решения ОДУ отличается от описанного ранее алгоритма метода Эйлера (рис 7.3) только алгоритмом расчета новой точки (Рис. 7.5).

Погрешность метода d » О(h3).

 

Пример 7.2. Решение ранее рассмотренного уравнения (пример 7.1) модифицированным методом Эйлера.

y - 2×y + x2 = 1, x Î [0;1], y(0) = 1.

Пусть n = 10 , h = (1 - 0)/10 = 0,1.

Начальная точка x0 = 0, y0 = 1.

Расчёт первой точки.

Аналогично расчёт следующих точек: 2, 3, ... ,10.

 

 
 

 

 


Рис. 7.5. Алгоритм расчёта новой точки модифицированным методом Эйлера:



<== предыдущая лекция | следующая лекция ==>
Метод Эйлера (метод Рунге-Кутта 1-го порядка). | Исправленный метод Эйлера.


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.003 сек.