русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Достаточные признаки сходимости знакопостоянных рядов


Дата добавления: 2014-05-05; просмотров: 4151; Нарушение авторских прав


(с положительными членами)

I. Признаки сравнения рядов.

Теорема 1. Пусть даны два знакоположительных ряда: (1) и (2). Если для всех n выполняется неравенство: (3). То из сходимости ряда (2) следует сходимость ряда (1), а из расходимости ряда (1) следует расходимость ряда (2).

Замечания:

a) Теорема 1 справедлива и в том случае, когда неравенство (3) выполняется не для всех членов рядов (1) и (2), а начиная с некоторого номера N;

b) знакоотрицательный ряд переходит в знакоположительный путем умножения на «-1», что не влияет на сходимость ряда.

Теорема 2. Предельный признак сравнения.

Пусть даны два знакоположительных ряда (1) и (2). Если существует конечный, не равный нулю, предел , то ряды (1) и (2)сходятся или расходятся одновременно.

Пример 2. Исследовать сходимость ряда:

Решение. Сравним данный ряд с рядом геометрической прогрессии . Этот ряд сходится, т.к. q=1/2<1. Мы имеем . Следовательно, по теореме 1 исходный ряд сходится.

Пример 3. Исследовать сходимость ряда:

Решение. Сравним данный ряд с гармоническим расходящимся рядом.

Мы имеем . Следовательно, исходный ряд расходится.

Ряд, с которым сравнивают исследуемый ряд, называется эталонным.

В качестве эталонных рядов используются:

1) гармонический ряд Он расходится.

2) обобщенный гармонический ряд . При α>1 ряд сходится, а при - расходится.

3) Геометрический ряд . Ряд сходится при |q|<1, и расходится при .

Замечания:

a) при решении примеров иногда требуется отбросить несколько членов ряда, если сначала есть отрицательные члены, а затем ряд знакоположительный. По третьему свойству это не влияет на сходимость ряда.

b) Если общий член ряда представляет собой отношение двух многочленов, то при подборе эталонного обобщенного гармонического ряда значение α выбирают равным разности наибольших показателей степеней знаменателя и числителя.





<== предыдущая лекция | следующая лекция ==>
Необходимый признак сходимости числового ряда. Гармонический ряд | II. Признак Даламбера


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.222 сек.