русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Лекция 9.ИНТЕГРИРОВАНИЕ РАЦИОНАЛЬНЫХ ДРОБЕЙ.


Дата добавления: 2014-04-28; просмотров: 809; Нарушение авторских прав


 

Рациональной дробью называется отношение двух многочленов ‒ степени mи ‒ степениn,

Возможны следующие случаи:

1. Если , то применяют метод деления углом для исключения целой части.

2. Если и в знаменателе квадратный трехчлен , то применяют метод дополнения до полного квадрата.

Пример 1.

Решение:

Пример 2.

Решение:

3. Метод неопределенных коэффициентов при разложении правильной рациональной дроби на сумму простейших дробей.

Любую правильную рациональную дробь , где , можно представить в виде суммы простейших дробей:

гдеA, B, C, D, E, F, M, N,… ‒ неопределенные коэффициенты.

Для нахождения неопределенных коэффициентов надо правую часть привести к общему знаменателю. Так как знаменатель совпадает со знаменателем дроби правой части, то их можно отбросить и прировнять числители. Затем, приравнивая коэффициенты при одинаковых степенях xв левой и правой частях, получим систему линейных уравнений с n‒ неизвестными. Решив эту систему, найдем искомые коэффициенты A, B, C, D и так далее. А,следовательно, разложим правильную рациональную дробь на простейшие дроби.

Рассмотрим на примерах возможные варианты:

1. Если множители знаменателя линейны и различны:

2. Еслисреди множителей знаменателя есть краткие множители:

3. Если среди множителей знаменателя есть квадратный трехчлен, неразложимый на множители:

Примеры: Разложить на сумму простейших рациональную дробь. Проинтегрировать.

Пример1.

Так как знаменатели дробей равны, то должны быть равны и числители, т. е.

Далее сравниваем коэффициенты при одинаковых степенях xв левой и правой частях. Получаем систему:

значит

поэтому

Пример 2.



Отсюда

Значит

Поэтому

тогда

Пример 3.

Значит

тогда

 

 



<== предыдущая лекция | следующая лекция ==>
Второй способ подведения под дифференциал. | Лекция 10.ИНТЕГРИРОВАНИЕ ТРИГОНОМЕТРИЧЕСКИХ ФУНКЦИЙ.


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.011 сек.