Структурная связность системы является, по-видимому, наиболее существенной ее качественной характеристикой. Кажется очевидным, что с исчезновением структурной связности исчезнет и сама система, поскольку само понятие системы подразумевает наличие «чего-то», находящегося в некотором отношении (или как-то связанного) с «чем-то».
Анализ задачи построения математического описания связности может быть осуществлен с помощью различных подходов, причем наиболее удачные из них построены на использовании теории графов и алгебраической (комбинаторной) топологии. Это является вполне закономерным, поскольку вопрос о характере связности «простейших элементов» единого целого интересует алгебру в гораздо большей степени, чем любую другую математическую дисциплину.
Сущность исследования связности состоит в том, чтобы осознать и уяснить себе те математические конструкции, которые описывают характер связи между отдельными компонентами системы. Если вообразить некоторую систему, в которой можно выделить n различных компонент (подсистем), то можно попытаться изобразить структуру (связную) графом (см.рис.2.5): n вершин изображают n подсистем системы, а дуга, соединяющая подсистемы i и j, показывает, что эти две подсистемы находятся в некотором отношении или как-то связаны между собой. Например, j-я подсистема может генерировать входы для i-й подсистемы, а i-я управлять j-й и т.д. Эту схему, естественно, можно развить. Так, например, можно ввести ориентацию на дугах и образовать ориентированный граф (орграф). Такое представление системы позволит изучать ситуации, когда i-я система влияет на j-ю, но не наоборот. Кроме того, можно учесть силу связности, сопоставив каждой направленной дуге некоторое число и т.д. Все это в конечном счете позволяет определить, какие компоненты системы влияют на другие компоненты и в какой степени. По существу теоретико-графовые модели позволяют несколько лучше понять, как можно было бы осуществить декомпозицию системы на меньшие составляющие без потери тех основных свойств, в силу которых она и является системой.
Рис.7.3 — Теоретико-графовое описание
Трофические структуры и экологические ниши. Рассмотрим экологическую структуру, состоящую из пяти видов: птиц, насекомых...
Рис.7.4 — Орграф простой системы
Трофическая структура этого сообщества изображается орграфом, вершины которого соответствуют видам. Дуга, проведенная от i-го вида к j-му, означает, что j-й вид является жертвой i-го вида. По данному графу можно построить матрицу смежности аналогичную матрице инциденций в теоретико-множественном описании, а также ряд других показателей, характеризующих важные аспекты системы.
I \ j
Птицы
Лисы
Насекомые
Травы
Антилопы
Птицы
Лисы
Насекомые
Травы
Антилопы
Отметим, что некоторые из компонент (например, травы) кажутся более важными для системы в целом, чем другие (например, птицы), и, по-видимому, это связано с такими экологическими понятиями, как трофический уровень и борьба видов. Важно подчеркнуть, что теоретико-графовое описание позволяет непосредственно увидеть некоторые геометрические свойства матрицы смежности.
Как бы ни были важны и удобны теоретико-графовые методы для зрительного анализа связности, их использование неизбежно связано с трудностями геометрического и аналитического характера, если учитывается структура самих компонент. Из общих соображений можно ожидать, что при попытке описать многомерную структуру планарным графом или, более общо, графом, изображенным на плоскости (это не одно и то же!), многое из геометрической структуры системы будет утеряно или в лучшем случае скрыто. По этой причине обратимся к другому возможному способу анализа связности, основанному на топологических идеях.
Приближенно симплициальный комплекс состоит из множества вершин X и множества симплексов Y, образованных из этих вершин в соответствии с заданным бинарным отношением.Симплициальный комплекс образован множеством симплексов Y, связанных через общие грани, т.е. через общие вершины. Например, можно положить Y = X = {птицы, лисы, насекомые, травы, антилопы}. При этом отношение таково: симплекс состоит из всех вершин, таких, что Xj является жертвой Yi. Таким образом, Yi = «птицы» — 1-симплекс, состоящий из вершин «насекомые» и «травы», y2 = «лисы» — 1-симплекс, состоящий из вершин «птицы» и «насекомые» и т.д. Отметим, что n-симплекс состоит из n+1 вершин и его размер на единицу меньше числа вершин.
Вообще говоря, p — симплекс представляется выпуклым многогранником с вершинами в эвклидовом пространстве, а комплекс Ky(X,L) совокупностью таких многогранников в эвклидовом пространстве E. Хотя размерность наверняка не превышает суммы размерностей всех симплексов из Ky(X,L), однако поскольку многие симплексы имеют общие грани, то размерность на самом деле окажется меньше. В действительности можно показать, что если dim[Ky(X,L)] = n, то 7 a 1 = 2⋅n + 1. Так, если dim[Ky(X,L)] = 1, то наибольший порядок есть p = 1, поэтому можно ожидать, что трехмерного пространства E3 будет достаточно, чтобы геометрически представить произвольный комплекс размерности 1. Это можно проиллюстрировать следующим образом: на плоскости (E2) надо соединить непересекающимися линиями три дома H1, H2 и H3 с источником газа, воды и электроэнергии. Неразрешимость поставленной задачи иллюстрирует наше утверждение. Задача графически изображена на рис.7.5, а ее решение в E3 показано на рис.7.6.
Рис.7.5 — Проблема пересечений в E2
Рис.7.6 — Решение проблемы пересечений в E2
Основываясь на геометрической интуиции, можно изучать многомерную связную структуру комплекса Ky(X,L) различными способами с привлечением алгебраических методов. В связи с этим рассмотрим некоторые важные понятия.