При внешнем сопряжении центры О1 и О2 сопрягаемых дуг радиусов R1 и R2 лежат вне сопрягающей дуги радиуса R.
Внешнее сопряжение дуг выполняется в следующей последовательности:
1. Находим центр сопряжения, точку О пересечения дуг окружностей с радиусами R1+R и R2+R соответственно концентричных окружностям с радиусами R1 и R2;
2. Соединяем прямыми центр сопряжения О с центрами окружностей О1 и О2, которые пересекаясь с заданными окружностями определяют положение точек сопряжения А и В;
3. Строят сопряжение (рис. 66).
При внутреннем сопряжении центры О1 и О2 сопрягаемых дуг радиусов R1 и R2 лежат внутри сопрягающей дуги радиуса R.
Внутреннее сопряжение дуг выполняется в следующей последовательности:
1. Находим центр сопряжения, точку О пересечения дуг окружностей с радиусами R-R1 и R-R2 соответственно концентричных окружностям с радиусами R1 и R2;
2. Соединяем прямыми центр сопряжения О с центрами окружностей О1 и О2, которые пересекаясь с заданными окружностями определяют положение точек сопряжения А и В;
3. Строят сопряжение (рис. 67).
При смешанном сопряжении центр О2 одной из сопрягаемых дуг лежит внутри сопрягающей дуги радиуса R, а центр О1 другой сопрягаемой дуги вне ее.
Внутреннее сопряжение дуг выполняется в следующей последовательности:
1. Находим центр сопряжения, точку О пересечения дуг окружностей с радиусами R+R1 и R-R2 соответственно концентричных окружностям с радиусами R1 и R2;
2. Соединяем прямыми центр сопряжения О с центрами окружностей О1 и О2, которые пересекаясь с заданными окружностями определяют положение точек сопряжения А и В;
3. Строят сопряжение (рис. 68).
Деление окружности на восемь равных частей производится в следующей последовательности:
1. Проводят две перпендикулярные оси, которые пересекая окружность в точках 1,2,3,4 делят ее на четыре равные части;
2. Применяя известный прием деления прямого угла на две равные части при помощи циркуля или угольника строят биссектрисы прямых углов, которые пересекаясь с окружностью в точках 5, 6, 7, и 8 делят каждую четвертую часть окружности пополам.