русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Предельная форма признака Даламбера.


Дата добавления: 2013-12-24; просмотров: 3458; Нарушение авторских прав


Конечная форма признака Даламбера.

Признак Даламбера.

Пусть , тогда ряд сходится.

Пусть , тогда ряд расходится.

 

Доказательство. Пусть .

Тогда .

, и ряд сходится. Можно было, не оценивая частичную сумму ряда, заключить, что ряд сходится по первому признаку сравнения с бесконечно убывающей геометрической прогрессией.

Пусть , Тогда . Поэтому не стремится к нулю при , необходимый признак сходимости ряда не выполнен, ряд расходится.

 

 

Пусть , тогда ряд сходится. Пусть , тогда ряд расходится. Если , то признак не позволяет сделать вывод о сходимости или расходимости ряда.

 

Доказательство. Пусть . Тогда .

При малом . По конечной форме признака Даламбера ряд сходится.

Пусть . Тогда . При малом , то есть . Поэтому не стремится к нулю при , необходимый признак сходимости ряда не выполнен, ряд расходится.

Замечание. Признак Даламбера удобно применять, когда общий член ряда содержит произведение некоторых чисел или факториал.

Правда, если общий член ряда содержит факториал, то его можно заменить по формуле Стирлинга и применять второй признак сравнения.

Пример. .

. Ряд сходится по признаку Даламбера.

 

Пример. . Рассмотрим , так как последовательность , монотонно возрастая, стремится к при , то

. Следовательно, . Поэтому не стремится к нулю при , необходимый признак сходимости ряда не выполнен, ряд расходится.

Заметим, что . Поэтому признак Даламбера в предельной форме не дает ответ о сходимости или расходимости ряда, хотя признак в конечной форме позволяет установить расходимость ряда.

 



<== предыдущая лекция | следующая лекция ==>
Второй признак сравнения. | Предельная форма радикального признака Коши.


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.004 сек.