русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Второй признак сравнения.


Дата добавления: 2013-12-24; просмотров: 1209; Нарушение авторских прав


Первый признак сравнения рядов.

Признаки сравнения рядов.

Пусть выполнено неравенство . Тогда из сходимости ряда следует сходимость ряда , а из расходимости ряда следует расходимость ряда .

Замечание. В силу свойства сходящихся рядов, конечное число членов ряда не влияет на сходимость и неравенство можно проверять «начиная с некоторого n». Поэтому эту фразу часто можно встретить в теоремах о рядах. Иногда ее просто опускают, но ее всегда надо иметь в виду.

 



Доказательство. 1) Пусть ряд сходится. Тогда выполнено неравенство . Поэтому последовательность частичных сумм ограничена сверху числом . Но эта последовательность не убывает. Следовательно, по теореме Вейерштрасса . Последнее неравенство справедливо в силу теоремы о предельном переходе в неравенстве.

2) Пусть ряд расходится. Если ряд сходится, то по п.1 доказательства и ряд сходится. Противоречие. Следовательно, ряд расходится.

 



Пример. Ряд расходится, так как , а ряд (гармонический) расходится.

 



Пусть . Тогда ряды и сходятся или расходятся «одновременно», т.е. один из них сходится, то и другой сходится, если один расходится, то и другой расходится.

Доказательство. Раскроем определение предела. .

.

Если ряд сходится, то по 1 признаку сравнения ряд сходится (, ряд сходится (свойство сходящихся рядов).

Если ряд сходится, то ряд сходится (свойство сходящихся рядов), тогда по 1 признаку сравнения ряд сходится.

Пусть ряд расходится. Если ряд сходится, то по предыдущему ряд сходится (противоречие).

Пусть ряд расходится. Если ряд сходится, то по предыдущему ряд сходится (противоречие).

 



Пример. Ряд с расходится по второму признаку сравнения (ряд сравнения – гармонический ряд).

Ряд сходится. - ограничена. Ряд сравнения - сходящийся ряд Дирихле.

 





<== предыдущая лекция | следующая лекция ==>
Интегральный признак Коши. | Предельная форма признака Даламбера.


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.005 сек.