Векторное поле называется потенциальным, если существует такое скалярное поле (потенциал векторного поля ), что =.
Замечание. Если поле - потенциально, то = - полный дифференциал. Тогда - полный дифференциал. Поэтому свойства потенциального поля можно сформулировать и доказать как следствия теоремы о полном дифференциале.
1. Линейный интеграл потенциального поля не зависит от формы дуги L = , а зависит только от начальной и конечной точек дуги.
В самом деле, =.
2. Циркуляция потенциального поля равна нулю
Полагая дугу АВ замкнутой (A = B), получаем =
3. Потенциальное поле является безвихревым, т.е.
Оператор Гамильтона .
Применим оператор Гамильтона к скалярному полю .
Оператор Гамильтона представляет собой вектор-оператор. Его можно скалярно или векторно умножить на векторное поле .
Это дифференциальные операции первого порядка над скалярным и векторным полями. От скалярного поля можно взять градиент, от векторного поля можно взять дивергенцию и ротор.
В результате дифференциальных операций первого порядка мы получаем скалярные и векторные поля .
К ним вновь можно применить дифференциальные операции первого порядка.
От скалярного поля можно взять градиент, получив векторное поле .
От векторных полей можно взять ротор и дивергенцию, получив скалярные поля , и векторные поля , .
Итак, дифференциальные операции второго порядка позволяют получить скалярные поля , и векторные поля , , .
Ранее было показано, что потенциальное поле – безвихревое, т.е. =0.
Покажем, что поле ротора – соленоидальное поле, т.е. =0.
Доказательство.
= .
Три остальных векторных поля связаны друг с другом. Это становится ясным, если рассматривать векторные операции с оператором Гамильтона «набла» аналогично обычным векторным операциям. Однако, эти аналогии не совсем верны, см. подробнее о свойствах оператора «набла» выпуск 7 учебника.
=, =
Известно соотношение . Перенося это правила на действия с оператором «набла», получим
.
Здесь - оператор Лапласа (скаляр – оператор).
.
- произведение скаляр-оператора Лапласа на вектор .