русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Дифференциальные операции второго порядка.


Дата добавления: 2013-12-24; просмотров: 2914; Нарушение авторских прав


Оператор Гамильтона

Свойства потенциального поля.

Потенциальное поле и его свойства.

Векторное поле называется потенциальным, если существует такое скалярное поле (потенциал векторного поля ), что =.

Замечание. Если поле - потенциально, то = - полный дифференциал. Тогда - полный дифференциал. Поэтому свойства потенциального поля можно сформулировать и доказать как следствия теоремы о полном дифференциале.

 

1. Линейный интеграл потенциального поля не зависит от формы дуги L = , а зависит только от начальной и конечной точек дуги.

 

В самом деле, =.

2. Циркуляция потенциального поля равна нулю

 

Полагая дугу АВ замкнутой (A = B), получаем =

3. Потенциальное поле является безвихревым, т.е.

 

Оператор Гамильтона .

Применим оператор Гамильтона к скалярному полю .

Оператор Гамильтона представляет собой вектор-оператор. Его можно скалярно или векторно умножить на векторное поле .

Это дифференциальные операции первого порядка над скалярным и векторным полями. От скалярного поля можно взять градиент, от векторного поля можно взять дивергенцию и ротор.

В результате дифференциальных операций первого порядка мы получаем скалярные и векторные поля .

К ним вновь можно применить дифференциальные операции первого порядка.

От скалярного поля можно взять градиент, получив векторное поле .

От векторных полей можно взять ротор и дивергенцию, получив скалярные поля , и векторные поля , .

Итак, дифференциальные операции второго порядка позволяют получить скалярные поля , и векторные поля , , .

Ранее было показано, что потенциальное поле – безвихревое, т.е. =0.

 

Покажем, что поле ротора – соленоидальное поле, т.е. =0.

Доказательство.

= .

Три остальных векторных поля связаны друг с другом. Это становится ясным, если рассматривать векторные операции с оператором Гамильтона «набла» аналогично обычным векторным операциям. Однако, эти аналогии не совсем верны, см. подробнее о свойствах оператора «набла» выпуск 7 учебника.



=, =

Известно соотношение . Перенося это правила на действия с оператором «набла», получим

.

Здесь - оператор Лапласа (скаляр – оператор).

.

- произведение скаляр-оператора Лапласа на вектор .

 



<== предыдущая лекция | следующая лекция ==>
Теорема (о полном дифференциале) для пространственной кривой. | Лекция 10. Числовые ряды и их свойства.


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.006 сек.