русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Лекция 10. Числовые ряды и их свойства.


Дата добавления: 2013-12-24; просмотров: 1710; Нарушение авторских прав


Часть 2. Числовые и функциональные ряды

Гармоническое поле.

Скалярное поле называется гармоническим, если

- уравнение Лапласа.

Векторное поле называется гармоническим,если оно потенциальное (), а потенциал - гармоническое скалярное поле, т.е. .

Теорема.Для того, чтобы векторное поле было гармоническим, необходимо и достаточно чтобы оно было соленоидальным и потенциальным.

Необходимость. Если векторное поле - гармоническое, то оно потенциальное, т.е. , тогда оно соленоидально, так как .

Достаточность. Если векторное поле потенциальное, то . Так как оно еще и соленоидально, то 0 = . Следовательно, поле потенциально и его потенциал удовлетворяет уравнению Лапласа, поэтому векторное поле – гармоническое.

 

Так как гармоническое поле потенциально и соленоидально, то его свойства – свойства соленоидального поля и свойства потенциального поля.

 

Числовой ряд– это сумма бесконечного количества чисел, выбранных по определенному алгоритму. Обычно задают формулу общего члена ряда .

Примеры

1. 1+- бесконечно убывающая геометрическая прогрессия со знаменателем . Ее сумма равна ,

2. 1+1+1+…..Сумма этого ряда бесконечна.

 

3. 1-1+1-1… Сумма этого ряда не существует (ни конечная, ни бесконечная).

 

При изучении рядов возникает основной вопрос: «Сходится ли ряд». Отвечая на этот вопрос для геометрической прогрессии, мы вычисляем последовательно 1+, =1+1+- суммы n членов ряда – частичные суммы ряда .

Ряд называется сходящимся,если существует конечный предел последовательности частичных сумм ряда – он называется суммой ряда
.

Рядназывается расходящимся, если предел частичных сумм ряда бесконечен или вообще не существует.

 

Необходимый признак сходимости ряда.Если ряд сходится, то .

Доказательство. . Пусть ряд сходится, тогда .



Необходимый признак позволяет отсеивать часть расходящихся рядов.

 

Достаточный признак расходимости.Если , то ряд расходится.

Доказательство (от противного). Пусть ряд сходится. Тогда по необходимому признаку сходимости ряда Противоречие с .

 

Пример. Ряд расходится, так как

Пример Ряд расходится, так как .

 



<== предыдущая лекция | следующая лекция ==>
Дифференциальные операции второго порядка. | Свойства сходящихся рядов.


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.004 сек.