Рассмотрим произвольную точку M в области V. Проведем через нее поверхность , границей которой служит контур . Пусть поверхность и контур удовлетворяют условиям теоремы Стокса. По теореме о среднем для поверхностного интеграла и формуле Стокса получим
.
Здесь, как и ранее - обозначение области и ее площади. Из этого соотношения, стягивая контур к точке M, получим
Это и есть инвариантное определение ротора.
Правая часть формулы – это поверхностная плотность циркуляции векторного поля (энергии в точке M вращения векторного поля или работы векторного поля при вращении вокруг некоторого направления, определяемого вектором ). Левая часть – это проекция ротора на это направление.
Если направление совпадает с направлением ротора и - единичный вектор, то левая часть равна модулю ротора. Поэтому модуль ротора векторного поля равен максимальному значению поверхностной плотности циркуляции векторного поля.
Левая часть достигает максимума при коллинеарности направления и ротора векторного поля. Поэтому направление ротора векторного поля – это то направление, вокруг которого поверхностная плотность циркуляции векторного поля – наибольшая.
Пример. Найти ротор линейной скорости вращения с постоянной угловой скоростью
Векторное поле линейной скорости .
,
Ранее была сформулирована теорема о полном дифференциале для пространственной кривой. В ее доказательстве не хватало только одного пункта – перехода от пункта 3) к пункту 2). Все остальное доказывается аналогично случаю плоской кривой.
Пусть дуга AB лежит на кусочно-гладкой поверхности S, пусть функции P(x, y, z), Q(x, y, z), R(x, y, z) непрерывны и имеют непрерывные частные производные на S. Тогда следующие четыре утверждения эквивалентны.
5) не зависит от формы дуги (от пути интегрирования), а зависит только от начальной и конечной точек дуги.
6) Для любого замкнутого контура
7)
8) . - полный дифференциал.
Теперь переход от пункта 3) к пункту 2) легко сделать по формуле Стокса.
Криволинейный интеграл от полного дифференциала можно вычислять по формуле
= , так как интеграл не зависит от формы дуги (пути интегрирования).
Криволинейный интеграл от полного дифференциала можно вычислять также по формуле Ньютона – Лейбница