русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Теорема Стокса.


Дата добавления: 2013-12-24; просмотров: 3886; Нарушение авторских прав


Свойства ротора.

Ротор векторного поля.

Лекция 9 Формула Стокса.

Назовем ротором векторного поля вектор

1) Линейность

 

= +

= .

 

2) - постоянное векторное поле.

 

 

3)

=

+= .

 

 

Пусть пространственно односвязная область V содержит кусочно-гладкую поверхность с кусочно-гладкой границей .

Пусть компоненты векторного поля непрерывны и имеют непрерывные частные производные по своим аргументам до второго порядка включительно в области V.

Тогда справедлива формула Стокса

Замечание. Нормаль к поверхности проведена так, чтобы наблюдатель, находясь на конце вектора нормали, видел бы обход контура , совершающимся в положительном направлении (так, чтобы область, границей которой является контур, при обходе контура находилась бы «по левую руку»).

 

 

Доказательство теоремы Стокса.

Как и формула Остроградского – Гаусса, формула Стокса состоит из трех независимых частей (в силу произвольности компонент векторного поля). Докажем одну из этих частей, остальные формулы доказываются аналогично. Докажем - часть формулы Стокса, в которой содержится только компонента P. Предположим, что поверхность описывается уравнением . Тогда нормаль к поверхности

представляет собой вектор

Отсюда видно, что . Вспомним еще, что .

(на поверхности , поэтому под интегралом стоит частная производная P по y с учетом зависимости z от y на поверхности)

=

Используем формулу Грина для области D с ее границей . Ее можно записать в виде

. Нам понадобится только та ее часть, которая относится к функции P . Продолжаем равенство дальше.

=.

В самом деле, на контуре , а переменные x, y на том и другом контуре те же, так как контур - это проекция контура на плоскость OXY (параллельно оси OZ).



Одна из частей формулы Стокса доказана.

 

Линейным интеграломвекторного поля по дуге L называется криволинейный интеграл .

Линейный интеграл имеет смысл работы векторного поля при перемещении по дуге.

 

Циркуляциейвекторного поля называется линейный интеграл по замкнутому контуру.

.

Вводя эти понятия, можно записать формулу Стокса в «полевой» форме

.

 

Мы определили ротор векторного поля в декартовой системе координат, однако ротор – это характеристика самого векторного поля Поэтому необходимо дать определение ротора, которое не зависит от выбора системы координат.

 



<== предыдущая лекция | следующая лекция ==>
Свойства соленоидального поля. | Теорема (о полном дифференциале) для пространственной кривой.


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.004 сек.