Задача о массе поверхности приводит нас к поверхностному интегралу 1 рода, точно так же, как задача о массе кривой привела нас к криволинейному интегралу первого рода.
Пусть в каждой точке кусочно-гладкой поверхности s задана поверхностная плотность f(x, y, z).
1. Введем разбиение s на элементарные области Dsi – элементы разбиения так, чтобы они не имели общих внутренних точек ( условие А).
2. Отметим точки Mi на элементах разбиения Dsi. Вычисляем f (Mi) = f (xi, yi, zi) и считаем плотность постоянной и равной f (Mi) на всем элементе разбиения Dsi..Приближенно вычислим массу ячейки разбиения как f (Mi) Dsi . Приближенно вычислим массу поверхности s, просуммировав массы ячеек (составим интегральную сумму) . В интегральной сумме - это площадь поверхности элементарной ячейки. Здесь, как и ранее, традиционно употребляется одно и то же обозначение для самой элементарной ячейки и для ее площади.
3. Измельчаем разбиение и переходим к пределу в интегральной сумме при условии (условие B). Получаем поверхностный интеграл первого рода, который равен массе поверхности (если только f(Mi)>0 на поверхности).
= .
Теорема существования. Пусть функция непрерывна на кусочно-гладкой ограниченной поверхности . Тогда поверхностный интеграл первого рода существует как предел интегральных сумм.
= .
Замечание. Интеграл (как предел интегральных сумм) не зависит:
1) от выбора разбиения поверхности (лишь бы выполнялось условие А),
2) от выбора отмеченных точек на элементах разбиения,
3) от способа измельчения разбиения (лишь бы выполнялось условие В).
(они аналогичны по формулировке и доказательству свойствам рассмотренных ранее интегралов первого рода).
1) Линейность.
2) Аддитивность
3) - площадь поверхности.
4) Если , то (если , то ),
5) Теорема об оценке.Если , то ,
6) Теорема о среднем. Пусть функция непрерывна на кусочно-гладкой ограниченной поверхности . Тогда на поверхности найдется точка С, такая что
Доказательство. Первые четыре свойства доказываются аналогично подобным свойствам в двойном, тройном интегралах, криволинейном интеграле первого рода (записью соотношений в интегральных суммах и предельным переходом). Во втором свойстве используется возможность такого разбиения поверхности на две части, чтобы ни один элемент разбиения не содержал граничные точки этих частей в качестве своих внутренних точек.
Теорема об оценке следует из свойств 3, 4.
Теорема о среднем, как и ранее, использует теоремы Вейерштрасса и Больцано-Коши для функций, непрерывных на замкнутых ограниченных множествах.