русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Свойства поверхностного интеграла первого рода.


Дата добавления: 2013-12-24; просмотров: 2561; Нарушение авторских прав


Лекция 7. Поверхностные интегралы.

Задача о массе поверхности.

 

Задача о массе поверхности приводит нас к поверхностному интегралу 1 рода, точно так же, как задача о массе кривой привела нас к криволинейному интегралу первого рода.

Пусть в каждой точке кусочно-гладкой поверхности s задана поверхностная плотность f(x, y, z).

1. Введем разбиение s на элементарные области Dsi – элементы разбиения так, чтобы они не имели общих внутренних точек ( условие А).

2. Отметим точки Mi на элементах разбиения Dsi. Вычисляем f (Mi) = f (xi, yi, zi) и считаем плотность постоянной и равной f (Mi) на всем элементе разбиения Dsi..Приближенно вычислим массу ячейки разбиения как f (Mi) Dsi . Приближенно вычислим массу поверхности s, просуммировав массы ячеек (составим интегральную сумму) . В интегральной сумме - это площадь поверхности элементарной ячейки. Здесь, как и ранее, традиционно употребляется одно и то же обозначение для самой элементарной ячейки и для ее площади.

3. Измельчаем разбиение и переходим к пределу в интегральной сумме при условии (условие B). Получаем поверхностный интеграл первого рода, который равен массе поверхности (если только f(Mi)>0 на поверхности).

= .

Теорема существования. Пусть функция непрерывна на кусочно-гладкой ограниченной поверхности . Тогда поверхностный интеграл первого рода существует как предел интегральных сумм.

= .

Замечание. Интеграл (как предел интегральных сумм) не зависит:

1) от выбора разбиения поверхности (лишь бы выполнялось условие А),

2) от выбора отмеченных точек на элементах разбиения,

3) от способа измельчения разбиения (лишь бы выполнялось условие В).

 

(они аналогичны по формулировке и доказательству свойствам рассмотренных ранее интегралов первого рода).

 

1) Линейность.

2) Аддитивность



3) - площадь поверхности.

4) Если , то (если , то ),

5) Теорема об оценке.Если , то ,

6) Теорема о среднем. Пусть функция непрерывна на кусочно-гладкой ограниченной поверхности . Тогда на поверхности найдется точка С, такая что

Доказательство. Первые четыре свойства доказываются аналогично подобным свойствам в двойном, тройном интегралах, криволинейном интеграле первого рода (записью соотношений в интегральных суммах и предельным переходом). Во втором свойстве используется возможность такого разбиения поверхности на две части, чтобы ни один элемент разбиения не содержал граничные точки этих частей в качестве своих внутренних точек.

Теорема об оценке следует из свойств 3, 4.

Теорема о среднем, как и ранее, использует теоремы Вейерштрасса и Больцано-Коши для функций, непрерывных на замкнутых ограниченных множествах.

 

 



<== предыдущая лекция | следующая лекция ==>
Формула Грина для многосвязной области. | Запись поверхностного интеграла второго рода.


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.007 сек.