русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Запись поверхностного интеграла второго рода.


Дата добавления: 2013-12-24; просмотров: 1768; Нарушение авторских прав


Задача о потоке жидкости через поверхность.

Поверхностный интеграл второго рода.

Вычисление поверхностного интеграла первого рода.

Раньше во второй лекции мы вычисляли площадь поверхности с помощью двойного интеграла, то есть сводили интеграл к двойному интегралу. Теперь нам надо свести интеграл к двойному интегралу. Повторяя вновь те же выкладки с той лишь разницей, что под интегралом стоит функция , получим аналогичную формулу для поверхности, заданной соотношением

=.

Если поверхность задана уравнением , точно так же получим формулу

= . Здесь надо учитывать, что точка (x, y, z) лежит на поверхности .

Пример. Найти массу поверхности однородной полусферы , z>0 с постоянной поверхностной плотностью W.

. .

Обозначим D - круг – проекцию полусферы на плоскость OXY.

=

=.

 

 

Поверхность называется ориентируемой, если в каждой ее точке существует вектор нормали к , - непрерывная вектор – функция на .

Поверхность называется односторонней, если при обходе поверхности по контуру g вектор нормали меняет свое направление на противоположное.

Поверхность называется двусторонней,если при обходе поверхности по контуру g вектор нормали не меняет свое направление.

Примером односторонней поверхности является петля Мебиуса, примерами двусторонних поверхностей – плоскость, сфера, гиперболоиды и т.д.

 

 

Поток жидкости через поверхность .– это количество жидкости, протекающее через поверхность в единицу времени.

 

Пусть на элементе поверхности площадке в некоторой ее точке M проведен вектор перемещения частицы жидкости через площадку в единицу времени. Предполагаем, что для всех точек перемещение одинаково по величине и направлению. Поток жидкости можно вычислить как объем наклонного (по направлению вектора перемещений) параллелепипеда, построенного на . Этот объем равен , где - единичный вектор нормали к поверхности. Тогда поток жидкости равен П =

Здесь мы вычисляли дифференциал потока, а затем интегрировали по всей поверхности – это метод дифференциалов при построении интеграла.



Можно строить интеграл с помощью метода интегральных сумм, как мы действовали обычно.

- Введем разбиение области на элементы так, чтобы соседние элементы не содержали общих внутренних точек (условие А),

- на элементах разбиения отметим точку М. Предполагая перемещение частиц жидкости постоянным на элементе и равным (M), вычислим приближенно поток через элемент разбиения и просуммируем его по элементам, получая интегральную сумму .

- Измельчим разбиение при условии (условие В) и перейдем к пределу получая поверхностный интеграл второго рода

.

По виду это – поверхностный интеграл первого рода, он и имеет те же свойства, что поверхностный интеграл первого рода, но имеет еще и свойство ориентируемости. Интеграл по внешней стороне поверхности отличается знаком от интеграла по внутренней стороне поверхности, так как на различных сторонах поверхности нормали в той же точке нормали направлены по одной прямой в различные стороны.

Теорема существования формулируется так же, как для поверхностного интеграла первого рода с тем же замечанием о независимости интеграла от способа выбора разбиения (лишь бы выполнялись условия А), от выбора точек на элементах разбиения, от способа измельчения разбиения (лишь бы выполнялось условие В).

 

 

Запишем вектор перемещений частиц и нормаль в точке M(x, y, z), выделяя скалярные компоненты векторов

,

, . Знак «+» выбирается, если угол между нормалью к поверхности и осью (OX в первом интеграле, OY во втором, OZ в третьем) острый, знак «-» выбирается, если угол тупой. В самом деле, в поверхностных интегралах площади элементов поверхности положительны, а знаки «+» или «–» компенсируют знак косинуса угла между нормалью и координатной осью. При переходе от поверхностных интегралов к двойным одна из координат подставляется из уравнения поверхности, чтобы точка (x, y, z) находилась на поверхности .

 

Пример. Найти поток радиуса-вектора через полную поверхность тетраэдра, ограниченного координатными плоскостями и плоскостью x + y + z = 1

Поток радиус-вектора через координатные плоскости нулевой, так как на них радиус-вектор точки лежит в координатной плоскости и ортогонален нормали к координатной плоскости, т.е. . Вычислим поток через грань тетраэдра, лежащую в плоскости x + y + z =1. Он и будет суммарным потоком, так как поток через остальные грани нулевой. Для этой грани , площадь грани – треугольника по теореме Пифагора равна (проверьте). Поток равен  

 

Поток равен .

Вычислим поток через двойные интегралы проектированием на координатные плоскости. Поток радиус-вектора через координатные плоскости нулевой. Тогда

=

=.

Получили тот же результат.

 

 



<== предыдущая лекция | следующая лекция ==>
Свойства поверхностного интеграла первого рода. | Скалярные поля.


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.007 сек.