Раньше во второй лекции мы вычисляли площадь поверхности с помощью двойного интеграла, то есть сводили интеграл к двойному интегралу. Теперь нам надо свести интеграл к двойному интегралу. Повторяя вновь те же выкладки с той лишь разницей, что под интегралом стоит функция , получим аналогичную формулу для поверхности, заданной соотношением
=.
Если поверхность задана уравнением , точно так же получим формулу
= . Здесь надо учитывать, что точка (x, y, z) лежит на поверхности .
Пример. Найти массу поверхности однородной полусферы , z>0 с постоянной поверхностной плотностью W.
. .
Обозначим D - круг – проекцию полусферы на плоскость OXY.
=
=.
Поверхность называется ориентируемой, если в каждой ее точке существует вектор нормали к , - непрерывная вектор – функция на .
Поверхность называется односторонней, если при обходе поверхности по контуру g вектор нормали меняет свое направление на противоположное.
Поверхность называется двусторонней,если при обходе поверхности по контуру g вектор нормали не меняет свое направление.
Примером односторонней поверхности является петля Мебиуса, примерами двусторонних поверхностей – плоскость, сфера, гиперболоиды и т.д.
Поток жидкости через поверхность .– это количество жидкости, протекающее через поверхность в единицу времени.
Пусть на элементе поверхности площадке в некоторой ее точке M проведен вектор перемещения частицы жидкости через площадку в единицу времени. Предполагаем, что для всех точек перемещение одинаково по величине и направлению. Поток жидкости можно вычислить как объем наклонного (по направлению вектора перемещений) параллелепипеда, построенного на . Этот объем равен , где - единичный вектор нормали к поверхности. Тогда поток жидкости равен П =
Здесь мы вычисляли дифференциал потока, а затем интегрировали по всей поверхности – это метод дифференциалов при построении интеграла.
Можно строить интеграл с помощью метода интегральных сумм, как мы действовали обычно.
- Введем разбиение области на элементы так, чтобы соседние элементы не содержали общих внутренних точек (условие А),
- на элементах разбиения отметим точку М. Предполагая перемещение частиц жидкости постоянным на элементе и равным (M), вычислим приближенно поток через элемент разбиения и просуммируем его по элементам, получая интегральную сумму .
- Измельчим разбиение при условии (условие В) и перейдем к пределу получая поверхностный интеграл второго рода
.
По виду это – поверхностный интеграл первого рода, он и имеет те же свойства, что поверхностный интеграл первого рода, но имеет еще и свойство ориентируемости. Интеграл по внешней стороне поверхности отличается знаком от интеграла по внутренней стороне поверхности, так как на различных сторонах поверхности нормали в той же точке нормали направлены по одной прямой в различные стороны.
Теорема существования формулируется так же, как для поверхностного интеграла первого рода с тем же замечанием о независимости интеграла от способа выбора разбиения (лишь бы выполнялись условия А), от выбора точек на элементах разбиения, от способа измельчения разбиения (лишь бы выполнялось условие В).
Запишем вектор перемещений частиц и нормаль в точке M(x, y, z), выделяя скалярные компоненты векторов
,
, . Знак «+» выбирается, если угол между нормалью к поверхности и осью (OX в первом интеграле, OY во втором, OZ в третьем) острый, знак «-» выбирается, если угол тупой. В самом деле, в поверхностных интегралах площади элементов поверхности положительны, а знаки «+» или «–» компенсируют знак косинуса угла между нормалью и координатной осью. При переходе от поверхностных интегралов к двойным одна из координат подставляется из уравнения поверхности, чтобы точка (x, y, z) находилась на поверхности .
Пример. Найти поток радиуса-вектора через полную поверхность тетраэдра, ограниченного координатными плоскостями и плоскостью x + y + z = 1
Поток радиус-вектора через координатные плоскости нулевой, так как на них радиус-вектор точки лежит в координатной плоскости и ортогонален нормали к координатной плоскости, т.е. .
Вычислим поток через грань тетраэдра, лежащую в плоскости x + y + z =1. Он и будет суммарным потоком, так как поток через остальные грани нулевой. Для этой грани , площадь грани – треугольника по теореме Пифагора равна (проверьте).
Поток равен
Поток равен .
Вычислим поток через двойные интегралы проектированием на координатные плоскости. Поток радиус-вектора через координатные плоскости нулевой. Тогда