Пусть есть некоторое пространственное материальное тело, занимающее область V, в каждой точке которой задана объемная плотность f(x, y, z). Надо вычислить массу пространственного тела.
Эта задача приводит к понятию тройного интеграла.
Введем разбиение области V на элементарные области, не имеющие общих внутренних точек (условие А) Dvk с малым объемом (обозначение области и ее объема обычно одно и то же, это принято уже более 200 лет и не вносит путаницы).
На каждом элементе разбиения – элементарной области отметим точку Mk(xk, yk, zk). Вычислим плотность в этой точке f(xk, yk, zk) = f(Mk) и предположим, что плотность постоянна в элементарной области. Тогда масса элементарной области Dvk приближенно равна = f(Mk) . Суммируя все такие массы элементарных областей (составляяинтегральную сумму), приближенно получим массу области V
Для того, чтобы точно вычислить массу области, остается перейти к пределу при условии (условие B).
.
Так задача о массе пространственной области приводит к тройному интегралу[7].
Введем некоторые ограничения на область интегрирования и подинтегральную функцию, достаточные для существования интеграла[8].
Потребуем, чтобы функция f(M) была непрерывна в области V и на ее границе.
Потребуем, чтобы область V была замкнутой, ограниченной, пространственно-односвязной областью с кусочно-гладкой границей.
Область назовем пространственно-односвязной, если ее можно непрерывной деформацией стянуть в точку.
Теорема существования.Пусть область V и функция f(M)=f(x, y, z) удовлетворяют сформулированным требованиям. Тогда тройной интеграл существует как предел интегральных сумм.
.
Замечание. Предел этот не зависит[9]:
1) от выбора разбиения области, лишь бы выполнялось условие А
2) от выбора отмеченных точек на элементах разбиения
3) от способа измельчения разбиения, лишь бы выполнялось условие B.
1. Линейность а) =+
б) = Эти свойства, как и для двойного интеграла, доказываются «через интегральные суммы». Составляют интегральную сумму для интегралов, стоящих в левой части равенства, в ней делают нужную операцию (это возможно, т.к. число слагаемых конечно) и получают интегральные суммы для интегралов в правой части. Затем, по теореме о предельном переходе в равенстве, переходят к пределу, и свойство доказано.
2. Аддитивность (по множеству) =+
Доказательство проводится, как и ранее, через интегральные суммы с использованием замечания к теореме существования.
Разбиение выбирается и измельчается так, чтобы граница областей V, W состояла из границ элементов разбиения (это можно сделать, учитывая замечание). Тогда интегральная сумма для интеграла в левой части равенства равна сумме двух интегральных сумм, каждая для своего для интеграла в правой части равенства. Переходя к пределу в равенстве, получаем требуемое соотношение.
3. , где – объем области V. Интегральная сумма для интеграла в левой части =
4. Если f(x, y, z) ³g(x, y, z), то ³. Переходя к пределу в неравенстве ³(по теореме о переходе к пределу в неравенстве), получим требуемое соотношение. Следствие. Если f(x, y, z) ³0, то ³0.
5. Теорема об оценкеинтеграла. Если m £f(x, y, z) £M, то mV££MV. Интегрируя неравенство m £f(x, y, z) £M, по свойству 4 получим требуемое неравенство.
6. Теорема о среднем.Пусть выполнены требования теоремы существования. Тогда Существует точка С в области V, такая, что f(C) = .
Доказательство. Так как функция непрерывна на замкнутом ограниченном множествеV, то существует ее нижняя грань и верхняя грань . Выполнено неравенство . Деля обе части на получим . Но число заключено между нижней и верхней гранью функции. Так как функция непрерывна на замкнутом ограниченном множестве , то в некоторой точке функция должна принимать это значение. Следовательно, f(C) = .