русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Логическая модель знаний.


Дата добавления: 2013-12-24; просмотров: 1074; Нарушение авторских прав


Продукционная модель знаний

Модели знаний

 

Обычно при проектировании БЗ проектировщик старается пользоваться стандартной моделью знаний (МЗ):

Продукционная модель- модель, позволяющая представить знания в виде предложений типа: Если (условие), го (действие). Под условием понимается некоторое предложение-образец, по которому осуществляется поиск в базе знаний, а под действием - действия, выполняемые при успешном исходе поиска (они могут быть промежуточными, выступающими далее как условия, и терминальными или целевыми, завершающими работу системы). При использовании продукционной модели база знаний состоит из набора правил. Программа, управляющая перебором правил, называется машиной вывода. Чаще всего вывод бывает прямой (от данных к поиску цели) или обратный (от цели для ее подтверждения - к данным). Данные - это, исходные факты, на основании которых запускается машина вывода - программа, перебирающая правила из базы. Продукционная модель чаще всего применяется в промышленных экспертных системах. Она привлекает разработчиков своей наглядностью, высокой модульностью, легкостью внесения дополнений и изменений и простотой механизма логического вывода. Имеется большое число программных средств, реализующих продукционный подход (язык OPS 5; "оболочки" или "пустые" ЭС - EXSYS, ЭКСПЕРТ; инструментальные системы ПИЭС и СПЭИС и др.), а также промышленных ЭС на его основе (ФИАКР) и др.

Логическая модель представляет собой формальную систему - некоторое логическое исчисление. Все знания о предметной области описываются в виде формул этого исчисления или правил вывода. Описание в виде формул дает возможность представить декларатив­ные знания, а правила вывода - процедурные знания. Языки представлений знаний логического типа широко использо­вались на ранних стадиях развития интеллектуальных систем, но вскоре были вытеснены (или, во всяком случае, сильно потеснены) языками других типов. Объясняется это громоздкостью записей, опирающихся на классические логические исчисления. При формировании таких записей легко допустить ошибки, а поиск их очень сложен. Отсутствие наглядности, удобочитаемости (особенно для тех, чья деятельность не связана с точными науками) затрудняло распространение языков такого типа.



Фреймовая модель знаний.

Фрейм (англ. frame - каркас или рамка) предложен М. Минским в 1970-е гг. как структура знаний для восприятия пространственных сцен. Эта модель имеет глубокое психологическое обоснование. Под фреймом понимается абстрактный образ или ситуация. Фреймом называется также и формализованная модель для отображения образа. Различают фреймы-образцы, или прототипы, хранящиеся в базе знаний, и фреймы-экземпляры, которые создаются для отображения реальных ситуаций на основе поступающих данных. Модель фрейма является достаточно универсальной, поскольку позволяет отобразить все многообразие знаний о мире через: - фреймы-структуры, для обозначения объектов и понятий (заем, залог, вексель); - фреймы-роли (менеджер, кассир, клиент); - фреймы-сценарии (банкротство, собрание акционеров); - фреймы-ситуации (тревога, авария, рабочий режим устройства) и др. Основным преимуществом фреймов как модели представления знаний является способность отражать концептуальную основу организации памяти человека, а также ее гибкость и наглядность. Специальные языки представления знаний в сетях фреймов FRL (Frame Representation Language) и другие позволяют эффективно строить промышленные ЭС. Широко известны такие фреймоориентированные экспертные системы, как ANALYST, МОДИС.



<== предыдущая лекция | следующая лекция ==>
Тенденции развития ЭС | Нейронные сети


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.008 сек.