русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Нейронные сети


Дата добавления: 2013-12-24; просмотров: 1510; Нарушение авторских прав


Семантическая модель знаний.

Термин семантическая означает "смысловая", а сама семантика - это наука, устанавливающая отношения между символами и объектами, которые они обозначают, т.е. наука, определяющая смысл знаков. Семантическая сеть - это ориентированный граф, вершины которого - понятия, а дуги - отношения между ними. Характерной особенностью семантических сетей является обязательное наличие трех типов отношений: - класс - элемент класса; - свойство - значение; - пример элемента класса. Проблема поиска решения в базе знаний типа семантической сети сводится к задаче поиска фрагмента сети, соответствующего некоторой подсети, соответствующей поставленному вопросу. Основное преимущество этой модели - в соответствии современным представлениям об организации долговременной памяти человека. Недостаток модели - сложность поиска вывода на семантической сети. Для реализации семантических сетей существуют специальные сетевые языки, например NET и др. Широко известны экспертные системы, использующие семантические сети в качестве языка представления знаний - PROSPECTOR, CASNET, TORUS.

По форме описания знания подразделяются на:

Декларативные (факты) - это знания вида "А есть А". Декларативные знания подразделяются на объекты, классы объектов и отношения. Объект - это факт, который задается своим значением. Класс объектов - это имя, под которым объединяется конкретная совокупность объектов-фактов. Отношения - определяют связи между классами объектов и отдельными объектами, возникшие в рамках предметной области.

Процедурные - это знания вида "Если А, то В". К процедурным знаниям относят совокупности правил, которые показывают, как вывести новые отличительные особенности классов или отношения для объектов. В правилах используются все виды декларативных знаний, а также логические связки. При обработке правил следует отметить рекурсивность анализа отношений, т.е. одно правило вызывает глубинный поиск всех возможных вариантов объектов БЗ.



Граница между декларативными и процедурными знаниями очень подвижна, т.е. проектировщик может описать одно и то же как отношение или как правило.

 

Нервная система и мозг человека состоят из нейронов, соединенных между собой нервными волокнами. Нервные волокна способны передавать электрические импульсы между нейронами. Все процессы передачи раздражений от нашей кожи, ушей и глаз к мозгу, процессы мышления и управления действиями - все это реализовано в живом организме как передача электрических импульсов между нейронами.

Рассмотрим строение биологического нейрона. Каждый нейрон имеет отростки нервных волокон двух типов - дендриты, по которым принимаются импульсы, и единственный аксон, по которому нейрон может передавать импульс. Аксон контактирует с дендритами других нейронов через специальные образования - синапсы, которые влияют на силу импульса.

Можно считать, что при прохождении синапса сила импульса меняется в определенное число раз, которое мы будем называть весом синапса. Импульсы, поступившие к нейрону одновременно по нескольким дендритам, суммируются. Если суммарный импульс превышает некоторый порог, нейрон возбуждается, формирует собственный импульс и передает его далее по аксону. Важно отметить, что веса синапсов могут изменяться со временем, а значит, меняется и поведение соответствующего нейрона.

Нетрудно построить математическую модель описанного процесса. На рисунке изображена модель нейрона с тремя входами (дендритами), причем синапсы этих дендритов имеют веса w1, w2, w3. Пусть к синапсам поступают импульсы силы x1, x2, x3 соответственно, тогда после прохождения синапсов и дендритов к нейрону поступают импульсы w1x1, w2x2, w3x3. Нейрон преобразует полученный суммарный импульс x=w1x1+ w2x2+ w3x3 в соответствии с некоторой передаточной функцией f(x). Сила выходного импульса равна y=f(x)=f(w1x1+ w2x2+ w3x3).

Таким образом, нейрон полностью описывается своими весами wk и передаточной функцией f(x). Получив набор чисел (вектор) xk в качестве входов, нейрон выдает некоторое число y на выходе.

Что такое нейросеть Как работает нейросеть

Искусственная нейронная сеть (ИНС, нейросеть) - это набор нейронов, соединенных между собой. Как правило, передаточные функции всех нейронов в сети фиксированы, а веса являются параметрами сети и могут изменяться. Некоторые входы нейронов помечены как внешние входы сети, а некоторые выходы - как внешние выходы сети. Подавая любые числа на входы сети, мы получаем какой-то набор чисел на выходах сети. Таким образом, работа нейросети состоит в преобразовании входного вектора в выходной вектор, причем это преобразование задается весами сети.

Практически любую задачу можно свести к задаче, решаемой нейросетью. В этой таблице показано, каким образом следует сформулировать в терминах нейросети задачу распознавания рукописных букв.

Задача распознавания рукописных букв
Дано: растровое черно-белое изображение буквы размером 30x30 пикселов Надо: определить, какая это буква (в алфавите 33 буквы)
Формулировка для нейросети
Дано: входной вектор из 900 двоичных символов (900=30x30) Надо: построить нейросеть с 900 входами и 33 выходами, которые помечены буквами. Если на входе сети - изображение буквы "А", то максимальное значение выходного сигнала достигается на выходе "А". Аналогично сеть работает для всех 33 букв.

Поясним, зачем требуется выбирать выход с максимальным уровнем сигнала. Дело в том, что уровень выходного сигнала, как правило, может принимать любые значения из какого-то отрезка. Однако, в данной задаче нас интересует не аналоговый ответ, а всего лишь номер категории (номер буквы в алфавите). Поэтому используется следующий подход - каждой категории сопоставляется свой выход, а ответом сети считается та категория, на чьем выходе уровень сигнала максимален. В определенном смысле уровень сигнала на выходе "А" - это достоверность того, что на вход была подана рукописная буква "A".

Задачи, в которых нужно отнести входные данные к одной из известных категорий, называются задачами классификации. Изложенный подход - стандартный способ классификации с помощью нейронных сетей.

Как построить сеть

Теперь, когда стало ясно, что именно мы хотим построить, мы можем переходить к вопросу "как строить такую сеть". Этот вопрос решается в два этапа:

1. Выбор типа (архитектуры) сети.

2. Подбор весов (обучение) сети.

На первом этапе следует выбрать следующее:

  • какие нейроны мы хотим использовать (число входов, передаточные функции);
  • каким образом следует соединить их между собой;
  • что взять в качестве входов и выходов сети.

Эта задача на первый взгляд кажется необозримой, но, к счастью, нам необязательно придумывать нейросеть "с нуля" - существует несколько десятков различных нейросетевых архитектур, причем эффективность многих из них доказана математически. Наиболее популярные и изученные архитектуры - это многослойный перцептрон, нейросеть с общей регрессией, сети Кохонена и другие. Про все эти архитектуры скоро можно будет прочитать в специальной литеретуре.

 

На втором этапе нам следует "обучить" выбранную сеть, то есть подобрать такие значения ее весов, чтобы сеть работала нужным образом. Необученная сеть подобна ребенку - ее можно научить чему угодно. В используемых на практике нейросетях количество весов может составлять несколько десятков тысяч, поэтому обучение - действительно сложный процесс. Для многих архитектур разработаны специальные алгоритмы обучения, которые позволяют настроить веса сети определенным образом. Наиболее популярный из этих алгоритмов - метод обратного распространения ошибки (Error Back Propagation), используемый, например, для обучения перцептрона.

Обучение нейросети

 

Обучить нейросеть - значит, сообщить ей, чего мы от нее добиваемся. Этот процесс очень похож на обучение ребенка алфавиту. Показав ребенку изображение буквы "А", мы спрашиваем его: "Какая это буква?" Если ответ неверен, мы сообщаем ребенку тот ответ, который мы хотели бы от него получить: "Это буква А". Ребенок запоминает этот пример вместе с верным ответом, то есть в его памяти происходят некоторые изменения в нужном направлении. Мы будем повторять процесс предъявления букв снова и снова до тех пор, когда все 33 буквы будут твердо запомнены. Такой процесс называют "обучение с учителем".

При обучении сети мы действуем совершенно аналогично. У нас имеется некоторая база данных, содержащая примеры (набор рукописных изображений букв). Предъявляя изображение буквы "А" на вход сети, мы получаем от нее некоторый ответ, не обязательно верный. Нам известен и верный (желаемый) ответ - в данном случае нам хотелось бы, чтобы на выходе с меткой "А" уровень сигнала был максимален. Обычно в качестве желаемого выхода в задаче классификации берут набор (1, 0, 0, ...), где 1 стоит на выходе с меткой "А", а 0 - на всех остальных выходах. Вычисляя разность между желаемым ответом и реальным ответом сети, мы получаем 33 числа - вектор ошибки. Алгоритм обратного распространения ошибки - это набор формул, который позволяет по вектору ошибки вычислить требуемые поправки для весов сети. Одну и ту же букву (а также различные изображения одной и той же буквы) мы можем предъявлять сети много раз. В этом смысле обучение скорее напоминает повторение упражнений в спорте - тренировку.

Оказывается, что после многократного предъявления примеров веса сети стабилизируются, причем сеть дает правильные ответы на все (или почти все) примеры из базы данных. В таком случае говорят, что "сеть выучила все примеры", " сеть обучена", или "сеть натренирована". В программных реализациях можно видеть, что в процессе обучения величина ошибки (сумма квадратов ошибок по всем выходам) постепенно уменьшается. Когда величина ошибки достигает нуля или приемлемого малого уровня, тренировку останавливают, а полученную сеть считают натренированной и готовой к применению на новых данных.

Важно отметить, что вся информация, которую сеть имеет о задаче, содержится в наборе примеров. Поэтому качество обучения сети напрямую зависит от количества примеров в обучающей выборке, а также от того, насколько полно эти примеры описывают данную задачу. Так, например, бессмысленно использовать сеть для предсказания финансового кризиса, если в обучающей выборке кризисов не представлено. Считается, что для полноценной тренировки требуется хотя бы несколько десятков (а лучше сотен) примеров.

Повторим еще раз, что обучение сети - сложный и наукоемкий процесс. Алгоритмы обучения имеют различные параметры и настройки, для управления которыми требуется понимание их влияния.



<== предыдущая лекция | следующая лекция ==>
Логическая модель знаний. | Прогнозирование


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.005 сек.