Если требуется найти переменные, при которых линейная функция многих переменных имеет максимум (или минимум) при выполнении определенных ограничений, заданных в виде линейных равенств или неравенств, то следует использовать симплекс-метод. Для этого сначала необходимо загрузит пакет simplex, а затем воспользоваться командой maximize (или minimize), где теперь в качестве range можно указывать в фигурных скобках ограничительную систему неравенств. Пакет simplex предназначен для решения задач линейной оптимизации. После его загрузки команды maximize и minimize меняют свое действие. Теперь эти команды выдают координаты точек, при которых заданная линейная функция имеет максимум или минимум. При этом допускается дополнительная опция для поиска только неотрицательных решений NONNEGATIVE.
Пример
При каких значениях переменных функция f(x,y,z)=-x+2y+3z имеет максимум, если требуется выполнение условий x+2y-3z<=4, 5x-6y+7z<=8, 9x+10z<=11, а все переменные неотрицательные?
Неопределенный интеграл вычисляется с помощью 2-х команд:
1) прямого исполнения – int(f, x), где f – подынтегральная функция, x – переменная интегрирования;
2) отложенного исполнения – Int(f, x) – где параметры команды такие же, как и в команде прямого исполнения int. Команда Int выдает на экран интеграл в аналитическом виде математической формулы.
>Int((1+cos(x))^2,x)= int((1+cos(x))^2,x);
Для вычисления определенного интеграла в командах int и Int добавляются пределы интегрирования, например