русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Метод хорд


Дата добавления: 2013-12-23; просмотров: 7790; Нарушение авторских прав


Метод итераций

 

Метод простых итераций для уравнения f(x) = 0 заключается в следующем:

1) Исходное уравнение преобразуют к виду, удобному для итераций:

x = φ(х). (2.2)

2) Выбирают начальное приближение х0 и вычисляют последующие приближения по итерационной формуле
xk = φ(хk-1), k =1,2, ... (2.3)

Если существует предел итерационной последовательности, , он является корнем уравнения f(x) = 0, т. е. f(ξ) =0.

 

y = φ(х)

 

 

a x0 x1 x2 ξ b

 

Рис. 2. Сходящийся процесс итераций

 

На рис. 2 показан процесс получения очередного приближения по методу итераций. Последовательность приближений сходится к корню ξ.

Теоретические основы для применения метода итера­ций дает следующая теорема.

Теорема 2.3. Пусть выполняются условия:

1) корень уравнения х = φ(х) принадлежит отрезку [а, b];

2) все значения функции φ(х) принадлежат отрезку [а, b],т. е. аφ(х)≤ b;

3) существует такое положительное число q < 1, что производная φ'(x) во всех точках отрезка [а, b] удовлет­воряет неравенству |φ'(x) | ≤ q.

Тогда:

1) итерационная последовательность хп = φ(хп-1)(п = 1, 2, 3, ...) сходится при любом x0Î [а, b];

2) предел итерационной последовательности является корнем уравнения

х = φ(x), т. е. если xk = ξ, то ξ= φ(ξ);

3) справедливо неравенство, характеризующее ско­рость сходимости итерационной последовательности

|ξ-xk| ≤ (b-a)×qk. (2.4)

 

Очевидно что, эта теорема ставит, довольно, жесткие условия, которые необходимо проверить перед примене­нием метода итераций. Если производная функции φ(x) по модулю больше единицы, то процесс итераций расхо­дится (рис. 3).

y = φ(x) y = x

 



Рис. 3. Расходящийся процесс итераций

 

В качестве условия сходимости итерационных методов чисто используется неравенство

|xk - xk-1| ε. (2.5)

Метод хорд заключается в замене кривой у = f(x) отрезком прямой, проходящей через точки (а, f(a)) и (b, f(b)) рис. 4). Абсцисса точки пересечения прямой с осью ОХ принимается за очередное приближение.

Чтобы получить расчетную формулу метода хорд, за­пишем уравнение прямой, проходящей через точки (a, f(a)) и (b, f(b)) и, приравнивая у к нулю, найдем х:

Þ

Алгоритм метода хорд:

 

1) пусть k = 0;

2) вычислим следующий номер итерации: k = k + 1.

Найдем очередное k-e приближение по формуле:

xk = a - f(a)(b - a)/(f(b) - f(a)).

Вычислим f(xk);

3) если f(xk)= 0 (корень найден), то переходим к п. 5.

Если f(xk) ×f(b)>0, то b = xk, иначе a = xk;

4) если |xk – xk-1| > ε, то переходим к п. 2;

5) выводим значение корня xk;

6) конец.

Замечание. Действия третьего пункта аналогичны действи­ям метода половинного деления. Однако в методе хорд на каж­дом шаге может сдвигаться один и тот же конец отрезка (пра­вый или левый), если график функции в окрестности корня выпуклый вверх (рис. 4, а) или вогнутый вниз (рис. 4, б).Поэтому в критерии сходимости используется разность сосед­них приближений.

Рис. 4. Метод хорд

4. Метод Ньютона (касательных)

Пусть найдено приближенное значение корня уравнения f(x)= 0, и обозначим его хп.Расчетная формула метода Ньютона для определения очередного приближения xn+1 может быть получена двумя способами.

Первый способ выражает геометрический смысл метода Ньютона и состоит в том, что вместо точки пересечения графика функции у = f(x)с осью Оx ищем точку пересечения с осью Оx касательной, проведенной к графику функции в точке (xn, f(xn)),как показано на рис. 5. уравнение касательной имеет вид у - f(xn)= f '(xn)(x - xn).

 

Рис. 5. Метод Ньютона (касательных)

В точке пересечения касательной с осью Оx переменная у = 0. Приравнивая у к нулю, выразим х и получим формулу метода касательных:

(2.6)

Второй способ: разложим функцию f(x)в ряд Тейлора в окрестности точки х = хn:

Ограничимся линейными слагаемыми относительно (х - хп),приравняем к нулю f(x) и, выразив из получен­ного уравнения неизвестное х,обозначив его через хn+1получим формулу (2.6).

Приведем достаточные условия сходимости метода Ньютона.

Теорема 2.4. Пусть на отрезке [а, b]выполняются ус­ловия:

1) функция f(x)и ее производные f '(хf ''(x)непре­рывны;

2) производные f '(x)и f ''(x)отличны от нуля и сохра­няют определенные постоянные знаки;

3) f(a)× f(b) < 0 (функция f(x)меняет знак на отрезке).
Тогда существует отрезок [α, β], содержащий искомый корень уравнения f(x) = 0, на котором итерационная пос­ледовательность (2.6) сходится. Если в качестве нулевого приближения х0выбрать ту граничную точку [α, β], в ко­торой знак функции совпадает со знаком второй произ­водной,

т.е. f(x0f"(x0)>0, то итерационная последо­вательность сходится монотонно

Замечание. Отметим, что метод хорд как раз идет с противо­положной стороны, и оба этих метода могут друг друга допол­нять. Возможен и комбинированный метод хорд-касательных.

5. Метод секущих

Метод секущих может быть получен из метода Ньютона при замене производной приближенным выражени­ем – разностной формулой:

, ,

. (2.7)

В формуле (2.7) используются два предыдущих при­ближения хп и xn-1.Поэтому при заданном начальном приближении х0необходимо вычислить следующее приближение x1, например, методом Ньютона с приближенной заменой производной по формуле

,

Алгоритм метода секущих:

 

1) заданы начальное значение х0и погрешность ε. Вычислим

;

2) для п = 1, 2, ... пока выполняется условие |xnxn-1| > ε, вычисляем хп+1 по формуле (2.7).



<== предыдущая лекция | следующая лекция ==>
Метод половинного деления | Метод Ньютона


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.577 сек.