русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Аналитический метод


Дата добавления: 2013-12-23; просмотров: 1204; Нарушение авторских прав


Методы локализации корней

Алгебраические и трансцендентные уравнения

Раздел № 2

Погрешность произвольной функции

 

Пусть задана произвольная функция и = f(xl, x2,..., хn), где xl, х2,…, хп – приближенные величины, а , ,…,– их известные предельные абсолютные погрешности. Тогда предельная абсолютная погрешность результата – функции и – для малых , вычисляется по формуле

(1.17)

Как видно из формулы (1.17), для ее применения тре­буется, чтобы функция f(xl, x2,..., хn)была дифферен­цируемой по всем переменным.

 

 

 

Рассмотрим уравнение f(x) = 0, где функция f(x) оп­ределена и непрерывна в некотором конечном или беско­нечном интервале а < х < b.

Определение 2.1. Корнем уравнения f(x) = 0 называет­ся значение ξ, обращающее функцию f(x) в нуль, т. е. та­кое, что f(ξ) = 0.

Определение 2.2. Уравнение f(x) = 0 называется алгеб­раическим, если функция f(x) является многочленом f(x) = Рn(х) = апхп + ап-1хn-1 + ... + а1х + а0, в противном случае уравнение f(x) = 0 называется трансцендентным.

Встречающиеся на практике уравнения часто не уда­ется решить аналитическими методами. Для решения таких уравнений используются численные методы.

Алгоритм нахождения корня уравнения с помощью численного метода состоит из двух этапов:

1) отделение или локализация корня, т. е. установле­ние промежутка [а, b], в котором содержится один ко­рень;

2) уточнение значения корня методом последователь­ных приближений.

 

 

Теоретической основой алгоритма отделения корней служит теорема

Коши о промежуточных значениях не­прерывной функции.

Теорема 2.1. Если функция f(x) непрерывна на отрез­ке [a, b] u f(a) = A, f(b) = В, то для любой точки С, лежа­щей между А и В, существует точка c Î [а, b], что f(c) = C.



Следствие. Если функция f(x) непрерывна на отрезке [a,b] и на его концах принимает значения разных зна­ков, то на этом отрезке существует, хотя бы один ко­рень уравнения f(x) = 0.

Пусть область определения и непрерывности функции является конечным отрезком [a,b]. Разделим отрезок на n частей:

ak = а + kh, k = 0, 1, ... п, h = (b - а)/п.

Вычисляя последовательно значения функции в точ­ках а0, а1, ..., ап, находим такие отрезки [ak, ak + 1], для которых выполняется условие

f(akf(ak + 1) < 0, (2.1)

т. е. f(ak) < 0, f(ak + 1) > 0 или f(ak) > 0, f(ak + 1) < 0. Эти отрезки и содержат хотя бы по одному корню.

Теорема 2.2. Если непрерывная функция f(x) монотон­на на отрезке [а, b] на его концах принимает значения разных знаков, то на этом отрезке существует един­ственный корень уравнения f(x) = 0.

Если функция f(х) дифференцируема и ее производная сохраняет знак на отрезке [а, b], то f(х) монотонна на этом отрезке.

Если производная f '(х) легко вычисляется и нетрудно определить ее корни, то для отделения корней уравнения f(х) = 0 можно применить следующий алгоритм:

1) найти критические точки, в которых производная f '(х) равна нулю или не существует, и определить ин­тервалы знакопостоянства производной f '(х) (на этих интер­валах функция f (х) может иметь только по одному корню);

2) составить таблицу знаков функции f (х), приравни­вая переменную х к критическим и граничным значени­ям, или близким к ним;

3) определить отрезки, на концах которых функция принимает значения разных знаков.

 



<== предыдущая лекция | следующая лекция ==>
Правило округления чисел | Метод половинного деления


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.147 сек.