русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Методы отбора единиц наблюдения


Дата добавления: 2013-12-23; просмотров: 2746; Нарушение авторских прав


 

В статистике используются различные способы отбора единиц наблюдения из генеральной совокупности в выборочную совокупность, т.е. методов формирования выборки. Выбор типа выборки зависит от задач исследования, а также от характера предварительной информации об изучаемом объекте.

Наиболее распространенными видами выборки являются собственно-случайная, механическая, типическая, серийная, комбинированная и многоступенчатая.

Собственно-случайная выборка.

При собственно-случайной выборке отбор единиц наблюдения из генеральной совокупности осуществляется либо путём жеребьёвки, либо с использованием таблицы случайных чисел. Основная задача состоит в том, чтобы обеспечить каждой единице совокупности равные шансы попасть в выборку. При этом количество отобранных в выборочную совокупность единиц обычно определяется исходя из принятой доли выборки.

Доля выборки есть отношение числа единиц выборочной совокупности n к численности единиц генеральной совокупности N:

 

 

 

Например, при 15%-ной выборке из партии товара в 3 000 единиц численность выборки составляет 450 единиц:

 

 

 

Средняя и предельная ошибки для повторного и бесповторного отбора при собственно-случайной выборке определяются по рассмотренным в вопросе 10.2 формулам.

Механическая выборка.

При механическом способе отбора генеральная совокупность разбивается на равновеликие группы. Из каждой группы в выборку отбирается лишь одна единица. Генеральная совокупность нумеруется от 1 до N и далее отбираются объекты для наблюдения через определенный интервал. Величина интервала при этом равна обратной величине доли выборки ( ).

Например, при 5%-ной выборке отбирается каждая 20-я единица (1:0,05), при 10%-ной выборке — каждая 10-я единица (1:0,1).

Механический отбор часто используется при проверке качества продукции, когда происходит последовательный выход готовых изделий с конвейера.



Средняя и предельная ошибки выборки при механическом способе определяются по рассмотренным в вопросе 10.2 формулам для бесповторного отбора.

Типическая выборка.

Если изучаемый объект отличается разнородностью состава, т.е. большой колеблемостью признака в генеральной совокупности, то преимущественно применяют типическую выборку. Например, при выборочном исследовании среднего уровня заработной платы работников одной отрасли. В этом случае совокупность вначале делится на однородные группы. Затем из каждой типической группы собственно-случайной или механической выборкой производится индивидуальный отбор единиц в выборочную совокупность.

Типическая выборка дает более точные результаты по сравнению с другими способами отбора единиц.

Если отбор внутри типических групп производится пропорционально их объёму, то число единиц наблюдения в каждой группе определяется по формуле:

 

 

 

где объём выборки из типической группы;

общий объём выборки;

общий объём типической группы;

объём генеральной совокупности.

 

Для определения средней ошибки типической выборки используются формулы:

– при повторном отборе

 

 

 

 

 

– при бесповторном отборе

 

 

 

 

где средняя дисперсия выборочной совокупности;

выборочная дисперсия доли.

Дисперсия определяется по следующим формулам:

 

 

Пример. С целью определения доли брака во всей партии изготовленных деталей была проведена 10 %-ная типическая выборка с отбором единиц пропорционально численности единиц типических групп. Внутри типических групп применялся метод механического отбора (бесповторный отбор). Результаты выборки представлены в таблице 10.1.

Таблица 10.1

Тип станка Выработка одного станка, шт. Процент брака по данным выборки Дисперсия
1 500 2,0 0,0196
2 000 3,0 0,0291
4 000 1,5 0,014775
5 000 1,0 0,0099
2 500 1,8 0,017676
Итого 15 000    

С вероятностью 0,997 определить пределы, в которых находится доля брака во всей партии деталей, изготовленных на всех станках.

Решение.Определяем средний процент бракованных изделий в выборке:

 

 

Рассчитываем среднюю из внутригрупповых дисперсий:

 

 

 

 

 

Определяем предельную ошибку выборочного процента брака. Для типической бесповторной выборки с вероятностью 0,997:

 

 

 

Отсюда находим генеральную среднюю:

 

 

 

т.е. средний процент брака во всей партии товара находится в пределах от 1,6% до 1,66%.

Серийная выборка.

При серийной выборке генеральную совокупность делят на одинаковые по объёму и однородные между собой группы – серии. В выборочную совокупность случайным методом отбираются серии, внутри которых проводится сплошное наблюдение. Например, серийная выборка часто применяется при обследовании населения, когда отбираются отдельные территориальные образования, в которых опрашиваются все жители.

Серийная выборка обычно проводится как бесповторная. Предельная ошибка выборки при этом определяется по формуле:

 

 

 

где межсерийная дисперсия средней или доли;

число серий в генеральной совокупности;

число отобранных серий.

 

 

Межсерийная дисперсия определяется по формулам:

 

 

Пример. В одной из школ насчитывается 36 классов. С целью изучения успеваемости учеников произведено обследование 4 классов, в которых средняя успеваемость составила 4,1; 4,2; 3,8; 3,5 балла. С вероятностью 0,997 установить пределы, в которых будет находиться средний балл учеников всей школы.

Решение.Определяем выборочную среднюю серийной выборки:

 

 

 

Рассчитываем дисперсию серийной выборки:

 

 

 

Определяем предельную ошибку выборки с вероятностью 0,997 ( ):

 

 

 

Средний балл всех учеников школы будет находиться в пределах:

 

 

 

 

 

Выборка также может быть одноступенчатой и многоступенчатой. При одноступенчатой выборке каждая отобранная единица сразу же подвергается изучению по заданному признаку. Так обстоит дело при собственно-случайной и серийной выборке.

При многоступенчатой выборке производят подбор из генеральной совокупности отдельных групп, а из групп выбираются отдельные единицы. Так производится типическая выборка с механическим способом отбора единиц в выборочную совокупность.

Комбинированная выборка.

Комбинированная выборка представляет сочетание различных способов отбора единиц наблюдения из генеральной совокупности. Комбинированная выборка может быть двухступенчатой. При этом генеральная совокупность сначала разбивается на группы. Затем производят отбор групп, а внутри последних осуществляется отбор отдельных единиц.

 



<== предыдущая лекция | следующая лекция ==>
Малая выборка | Основные вопросы


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.222 сек.