русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Степенной метод


Дата добавления: 2013-12-23; просмотров: 1492; Нарушение авторских прав


Вариационный метод

Частная спектральная задача

Сопряженная матрица

Рассмотрим вещественную матрицу A=(aij). Тогда сопряженная к ней в пространстве Rn матрица: A*=(a*ij)=AT.

В пространстве Rn A – линейный оператор; А* - сопряженный к нему.

Образ Im A – область значений оператора А: Im A= A(Rn).

Ядро ker A – множество элементов, обращаемых оператором А в ноль:

ker A={x | Ax=0}.

Im A, ker A – подпространства пространства Rn.

Задача: доказать указанное выше утверждение.

 

Лемма .

Доказательство

Im A – подпространство пространства Rn. Обозначим как L его ортогональное дополнение (множество всех элементов из Rn, ортогональных каждому элементу из Im A). Тогда . Докажем, что L=ker A.

Т.е. .

Т.е. .

Что и требовалось доказать.

 

 

Частная спектральная задача – задача нахождения некоторых собственных чисел матрицы и соответствующих собственных векторов.

 

Пусть А – симметричная матрица. Найдем её максимальное собственное число. Т.к. из ранее доказанного , то задача сводится к нахождению стационарных точек функционала .

Для матрицы А предположим, что:

а) её собственные вектора φ1… φn образуют базис в Rn.

б) её собственные числа удовлетворяют неравенствам | λ1 |>| λk|, k=2..n.

Тогда всякий вектор х из Rn может быть представим в виде: .

Построим последовательность векторов:

x(1)=Ax, x(2)=Ax(1)…x(m)=Ax(m-1)=Amx.

Значит, . Преобразуем правую часть равенства:

при m>>1,

т.к. тогда .

Получим, что:

,

а - соответствующий собственный вектор

(т.к. он определяется с точностью до скалярного множителя).

Знак λ1 найдем из следующего равенства:

- знак находится по первой компоненте.



Точность метода: .

 

 



<== предыдущая лекция | следующая лекция ==>
Сингулярное разложение матрицы | Максимизация первого столбца


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.004 сек.