русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Экстремумы.


Дата добавления: 2013-12-23; просмотров: 960; Нарушение авторских прав


Нули многочленов Чебышева

Многочлены Чебышева

Постановка задачи:

Для многочленов Pn(x,A) степени n co старшим коэффициентом, равным 1, требуется определить для и минимизирующий многочлен Pn(x,Amin), если это возможно.

Таким образом, рассматривается задача о многочленах со старшим коэффициентом, равным 1, наименее отклоняющихся от нуля.

 

Рассмотрим многочлены Чебышева:

 

Теорема Tn(x) – многочлены степени n со старшим коэффициентом, равным 1, методом математической индукции.

Доказательство

При n=1:

- многочлен 1ой степени.

При n=2:

Пусть утверждение верно . Докажем для n = k.

Заметим, что Tk-1(x) – многочлен степени k-1 по предположению, Tk-2(x) – многочлен степени (k-2). Таким образом, Tk(x) – многочлен степени k со старшим коэффициентом, равным 1.

Что и требовалось доказать.

 

Теорема (свойство четности)Все многочлены T2n(x) являются четными функциями, а T2n+1(x) – нечетными.

Доказательство

При n = 0: T0=1 – четная функция; T1=x – нечетная.

Пусть утверждение верно . Докажем его справедливость для n = k.

Заметим, что из предположения T2k-1 – нечетная функция, T2k-2 – четная.

Тогда - четная функция,

а- нечетная.

Что и требовалось доказать.

 

Заметим, что:

.

Обозначим .

Тогда .

Т.к. .

- нули многочлена Чебышева Tn(x) на [-1;1].

При этом других нулей нет (т.к. многочлен nой степени имеет не более n нулей).

 

Рассмотрим локальные экстремумы Тn(x) на [-1;1].

Т.к. то точками экстремума для Тn(х) на [-1;1] будут точки, где

Следовательно, cos(n·arccosx) = ±1

n·arccosx = πk,

Обозначим где

Отсюда, .

Т.к. .

- экстреальные точки для Tn(x) на [-1;1].

 

 

Ортогональность с весом

Функции f(x) и g(x) ортогональны на [a;b] с весом ρ(x), если (ортогональность в смысле Гильбертова пространства L2 [a;b]).



Доказательство

Обозначим

Что и требовалось доказать.



<== предыдущая лекция | следующая лекция ==>
Теорема Чебышева | Общий подход к решению поставленной задачи


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Полезен материал? Поделись:

Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.003 сек.