русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Полиномиальная интерполяция с кратными узлами


Дата добавления: 2013-12-23; просмотров: 798; Нарушение авторских прав


Метод наименьших квадратов

Рассмотрим некоторую функцию . В полиномиальной аппроксимации она приближается по значениям в узлах х0...хn линейной комбинацией степеней хk (полиномом k-ой степени).

Таким образом, функцию f(х) на [a,b], заданную в узлах х0...хn можно аппроксимировать некоторыми функциями φk(k), общее число которых (р+1), р≠n.

Рассмотрим некоторые употребляемые частные случаи:

1) Полиномиальная задача:найти для функции f(х) такую линейную комбинацию функций φk: что их разность в некотором определенном смысле минимальна (в случае полиномиальной аппроксимации разность рассматривается в узлах).

Рассмотрим следующее выражение:

Необходимое условие минимума функции

Таким образом, получим следующую систему уравнений:

 

 

Или:

2) Континуальная задача:аппроксимировать функцию f(х) в С [a, b] в смысле средне квадратичного.

Обозначим

Необходимое условие экстремума имеет вид:

Получим систему:

Или:

т.к. - скалярное произведение φm на φk в L2 (а, b), то:

Определитель с матрицей А=(аkm), где аkm= (φk, φm) – определитель Грамма.

 

Заметим, что det А≠0, если система линейно независима, следовательно, наилучшее средне квадратичное приближение существует и притом единственно.

Рассмотрим подпространство (натянутое на функции φ0...φр в пространстве L2 (а, b)).

- проекция f(х) на Вр+1. Приэтом она существует единственно, если φk линейно независима.

 

 

Пусть дана дискретная функция f(х) в узлах х0, х1...хmkk+1, ). А также заданы значения в узлах для производных функции f(х):

; S=0, 1...Sk-1. Причем

Требуется построить многочлен Qn(х) n-ой степени, совпадающий в узлах со всеми этими значениями, т.е. получим систему:



Интерполяционный многочлен Qn(х) определяется единственным образом. Действительно, предположим, что существует многочлен n-ой степени:

удовлетворяет условиям вышеописанной системы. Тогда их разность удовлетворяет следующим условиям:

Т.е. точки х0...хm – нули многочлена Рn(х) кратности S0...Sm соответственно. Получено: многочлен Рn(х)≠0 степени n имеет n+1 нулей (из кратности). Отсюда, Рn(х)≡0. Противоречие доказывает требуемое.

Таким образом, линейная алгебраическая система невырождена, и её решение находится единственным образом.

 



<== предыдущая лекция | следующая лекция ==>
Построение сплайна | Теорема Чебышева


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Полезен материал? Поделись:

Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.002 сек.