русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Построение сплайна


Дата добавления: 2013-12-23; просмотров: 1917; Нарушение авторских прав


Аппроксимация сплайнами

Интерполяционный полином в форме Ньютона

Рассматривается функция f(х), заданная дискретно в узлах х0...хn. Ставится задача её аппроксимации по этим данным.

Введём понятие разделённых разностей:

1-ого порядка -

2-ого порядка -

k-ого порядка -

нулевого порядка -

 

Тогда:

,

 

....................

....................

Из первого равенства получим:

 

Обозначим все слагаемые, кроме последнего как Рn(х), последнее - Rn(х).

Рn(х) – интерполяционный полином (т.к. он порядка n и совпадает в узлах с f(х)) Ньютона.

Следствие:

Рассматривается задача приближения функции f(х) на некотором интервале по её значениям в узлах х0...хnk< хk+1

Кусочно-линейная функция, совпадающая в узлах с f(х) – линейный сплайн.

Обозначим разбиение {x0…xn} как Т.

 

Сплайн порядка m для функции f(х) по разбиению Т – кусочно-полиномиальная функция, если:

1) на каждом из отрезков [xk-1, xk] это многочлен m-ого порядка

2) в узлах совпадает с функцией f(х):

3) во внутренних узлах (х1...хn-1) эта функция непрерывна вместе со своими производными до (m-1)-ого порядка .

 

Обозначим многочлен, который необходимо найти на [xk-1, xk] как:

(m+1 коэффициент).

Из условия 2) для сплайна => (n+1) уравнение.

Из условия 3) => (n-1) уравнение для каждой из m функций.

Итого всего уравнений для сплайна: n+1+m(n-1)=n(m+1)+1-m

Всего неизвестных коэффициентов (m+1) для каждого из n отрезков, т.е. n(m+1).

Таким образом, число уравнений и искомых коэффициентов совпадает при m=1, иначе условий не хватает для нахождения коэффициентов, и требуются дополнительные условия.

 

Основные сплайны:

- 1-ого порядка – линейные;

- 2-ого порядка – кубические (m=3).



Для них 4n-2 уравнения и 4n коэффициентов.

В качестве двух дополнительных условий обычно задают значения производных в двух узлах.

Таким образом, функция f(х) может быть интерполирована на [x0, xn] сплайном заданного порядка.

 

 



<== предыдущая лекция | следующая лекция ==>
Погрешность интерполяции | Полиномиальная интерполяция с кратными узлами


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Полезен материал? Поделись:

Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.002 сек.