русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Оптимизация эксперимента


Дата добавления: 2013-12-23; просмотров: 2523; Нарушение авторских прав


 

Полученное с помощью полного или дробного факторного эксперимента уравнение регрессии служит не только математической моделью химико-технологического процесса, но и используется для его оптимизации. Оптимизацией процесса называют целенаправленный поиск оптимальных условий его проведения. Задачу оптимизации можно сформулировать следующим образом: необходимо найти экспериментально координаты экстремальной точки (х1опт, х2опт, ..., хkопт) функции у = f(х1, х2, ..., хk) (рис. 7.1).

 

 

Рис. 7.1. Положение экстремума функции отклика

 

Величина, характеризующая уровень оптимизации процесса, называется критерием оптимальности. Например, критерием оптимальности может быть удельный выход продукта.

В большинстве случаев качество процесса определяется не одним, а несколькими показателями. Однако критерий оптимальности может быть только один. Например, максимальная производительность оборудования и минимальная себестоимость продукции обычно имеют место при различных технологических режимах. Поэтому при анализе всех показателей процесса в качестве критерия оптимизации выбирается наиболее важный показатель, а на другие накладываются ограничения. Ограничения накладываются также и на входные параметры, т.е. на диапазоны варьирования факторов. В качестве критерия оптимальности может быть выбран также обобщенный параметр оптимизации.

Оптимизировать процесс можно, фиксируя во время проведения эксперимента один из факторов, например х1, и двигаясь из точки L, координаты которой известны, в направлении оси х2 (рис. 7.2). Движение по х2 продолжается до тех пор, пока не прекратится прирост у. В точке с лучшим выходом М фиксируется фактор х2 и начинается движение вдоль оси х1, до тех пор пока не будет достигнута очередная точка с лучшим выходом N и так далее. Очевидно, что путь к экстремуму по ломаной LMNR… не самый короткий.



 

 

Рис. 7.2. Оптимизация путем фиксации одного из факторов

 

Более рациональным способом оптимизации является метод крутого восхождения по поверхности отклика (рис. 7.3), т.е. движение по градиенту, перпендикулярно линиям y = const.

Если описать поверхность отклика в общем случае функцией

 

y = f(x1, x2, ..., xk), (7.1)

 

то градиент функции будет определяться как

 

, (7.2)

 

где i, j, ..., k – единичные векторы в направлении координатных осей.

Предполагается, что функция f непрерывна, однозначна и не имеет особых точек.

Рис. 7.3. Оптимизация методом крутого восхождения

 

Д. Бокс и К. Уилсон предложили шаговый метод движения по поверхности отклика. Сущность этого метода заключается в следующем.

Среди всех имеющихся функций отклика, описывающих объект оптимизации, выбирают одну наиболее важную, например y1 = f1(x1, x2, ..., xk), и принимают ее в качестве критерия оптимальности. Затем указывают ограничения, накладываемые на остальные функции отклика и на влияющие факторы,

 

x1min < x1 < x1max; . . .; xkmin < xk < xkmax (7.3) m2 < y2 < M2; . . .; mn < yn < Mn .

 

Один из наиболее значимых факторов, например x1, принимают за базовый и для него вычисляют произведение соответствующего коэффициента регрессии на шаг варьирования b1D x1. Затем для базового фактора выбирают шаг проведения оптимизации D x1*. Для более точного нахождения координат оптимума обычно принимают D x1* £ Dx1. После этого вычисляют отношение

 

g = Dx1*/(b1D x1). (7.4)

 

Для всех остальных факторов шаги движения к оптимуму рассчитывают по формуле

Dxj* = g bj Dxj. (7.5)

 

Движение к оптимуму начинают из центра плана, который был использован для получения уравнения регрессии. Значения факторов на каждом новом шаге оптимизации находят путем прибавления Dxj* к соответствующим предыдущим значениям. Так осуществляется оптимизация по методу Бокса–Уилсона, получившему название метода крутого восхождения.

Отметим некоторые особенности этого метода. Движение из центра плана начинается в сторону наиболее быстрого увеличения критерия оптимальности. Это происходит вследствие того, что шаги Dxj* пропорциональны коэффициентам регрессии bj.

Если ищется минимум критерия оптимизации, то новые значения факторов находятся из предыдущих значений путем вычитания Dxj* .

Движение к экстремуму прекращают при выполнении следующих условий:

- значения факторов или функций отклика вышли за допустимые границы;

- достигнут экстремум критерия оптимизации.

 

Пример

Пусть в результате полного факторного эксперимента получено адекватное уравнение регрессии

 

= 35,6 + 1,95х1 + 1,3х2 ,

 

где – выход целевого продукта реакции, %; х1 – безразмерная температура; х2 – безразмерная концентрация реагента.

Введем также в рассмотрение функцию отклика у2, характеризующую скорость химической реакции [кмоль/(м3ч)]. Будем считать, что на скорость реакции и на диапазон изменения факторов наложены соответственно следующие ограничения, выраженные в натуральных значениях:

 

у2 ³ 2,5; 30 £ z1 £ 120; 10 % £ z2 £ 70 %.  

 

Будем оптимизировать выход целевого продукта химической реакции методом крутого восхождения. В качестве базового фактора примем температуру. Считая, что в ходе эксперимента интервал варьирования Dz1 = 5, примем шаг движения на крутом восхождении Dz1* = 4, тогда

 

g = Dzj*/ (b1 Dz1) = 4/(1,95×5) = 0,41.  

 

Шаг изменения концентрации на крутом восхождении

 

Dz2* = g b2Dz2 = 0,41×1,3×1 » 0,5 %.  

 

Здесь Dz2 = 1 принято по условиям полного факторного эксперимента.

Результаты опытов, выполненные по методу крутого восхождения, приведены в табл. 6.6.

 

Таблица 6.6

 

Результаты опытов по методу крутого восхождения

 

Характеристика z1 z2 x1 x2
Центр плана 35,6 35,1 2,9
Интервал варьирования
Шаг движения 0,5 0,8 0,5
Номер опыта Крутое восхождение
25,5 0,8 0,5 37,8 36,9 3,2
26,0 1,6 1,0 40,0 37,2 3,7
26,5 2,4 1,5 42,2 38,5 2,8
27,0 3,2 2,0 44,4 40,7 2,3
27,5 4,0 2,5 46,6 38,1 1,9
28,0 4,8 3,0 48,8 37,2 1,6

 

Примечание: – экспериментальные значения выхода целевого продукта химической реакции; – экспериментальные значения скорости реакции.

 

Расчетные значения критерия оптимальности непрерывно возрастают на крутом восхождении. В отличие от этого экспериментальные значения сначала возрастают, а затем, пройдя через максимум, начинают убывать. Такое расхождение между расчетными и экспериментальными значениями объясняется тем, что в процессе крутого восхождения мы выходим за пределы области адекватности уравнения регрессии.

В четвертом опыте получен максимальный выход продуктов реакции, однако скорость реакции здесь меньше допустимого значения. Поэтому предпочтение следует отдать опыту № 3.

Ограничения на величины z1 и z2 в ходе оптимизации не были нарушены.



<== предыдущая лекция | следующая лекция ==>
Дробный факторный эксперимент | Центральное композиционное планирование


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.005 сек.